tìm n là số tự nhiên để A chia hết cho B biết :A= -6x^n y^7;B = x^3 y^n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, Tìm cặp số tự nhiên x,y biết (x-2) .(y + 7) =17
b,Tìm số tự nhiên n để ( 3n+16) chia hết cho (n+4)

ta có y+7 là số tự nhiên lớn hơn 7 và là ước của 17
thế nên \(\hept{\begin{cases}y+7=17\\x-2=1\end{cases}\Leftrightarrow\hept{\begin{cases}y=10\\x=3\end{cases}}}\)
b. ta có : \(3n+14=3\times\left(n+4\right)+2\) chia hết cho n+4 khi 2 chia hết cho n+4
mà n là số tự nhiên nên n+4 > 3 thế nên không tồn tại số tự nhiên thỏa mãn

Bài 5.5:
\(\left(2x-3\right)\left(x+1\right)+\left(4x^3-6x^2-6x\right):\left(-2x\right)=18\)
\(\Leftrightarrow\left(2x^2+2x-3x-3\right)+2x\cdot\left(2x^2-3x-3\right):\left(-2x\right)=18\)
\(\Leftrightarrow2x^2-x-3-2x^2+3x+3=18\)
\(\Leftrightarrow2x=18\)
\(\Leftrightarrow x=\dfrac{18}{2}\)
\(\Leftrightarrow x=9\)


Bài 10:
\(ƯCLN\left(a,b\right)=14\Leftrightarrow\left\{{}\begin{matrix}a=14k\\b=14q\end{matrix}\right.\left(k,q\in N\text{*}\right)\\ ab=5488\Leftrightarrow196kq=5488\\ \Leftrightarrow kq=28\)
Mà \(\left(k,q\right)=1\Leftrightarrow\left(k;q\right)\in\left\{\left(4;7\right);\left(7;4\right);\left(1;28\right);\left(28;1\right)\right\}\)
\(\Leftrightarrow\left(a;b\right)\in\left\{\left(56;98\right);\left(98;56\right);\left(14;392\right);\left(392;14\right)\right\}\)
Bài 12:
\(n+20⋮n+5\\ \Leftrightarrow n+5+15⋮n+5\\ \Leftrightarrow n+5\inƯ\left(15\right)=\left\{1;3;5;15\right\}\)
Mà \(n\in N\Leftrightarrow n+5\in\left\{5;15\right\}\)
\(\Leftrightarrow n\in\left\{0;10\right\}\)

Bài 5:
a: \(x^2\ge0\forall x\)
=>\(x^2+2021\ge2021\forall x\)
Dấu '=' xảy ra khi x=0
b: \(22x^{22}\ge0\forall x;20x^{20}\ge0\forall x\)
Do đó: \(22x^{22}+20x^{20}\ge0\forall x\)
=>\(-22x^{22}-20x^{20}\le0\forall x\)
=>\(B=-22x^{22}-20x^{20}+2022\le2022\forall x\)
Dấu '=' xảy ra khi x=0
Bài 3:
a: 2x-1 là bội của x-3
=>2x-1⋮x-3
=>2x-6+5⋮x-3
=>5⋮x-3
=>x-3∈{1;-1;5;-5}
=>x∈{4;2;8;-2}
b: 2x+1 là ước của 3x+2
=>3x+2⋮2x+1
=>6x+4⋮2x+1
=>6x+3+1⋮2x+1
=>1⋮2x+1
=>2x+1∈{1;-1}
=>2x∈{0;-2}
=>x∈{0;-1}
Bài 1:
n;n+1;n+2;n+3 là bốn số nguyên liên tiếp
=>n(n+1)(n+2)(n+3)⋮4!=24
=>n(n+1)(n+2)(n+3)⋮3 và n(n+1)(n+2)(n+3)⋮8
A chia hết cho B khi và chỉ khi:
\(\hept{\begin{cases}n\ge3\\n\le7\end{cases}}\)
=> \(n\in\left\{3;4;5;6;7\right\}\)