Cho tam giác ABC vuông tại A , trung tuyến AM . Gọi D là trung điểm AC, E là điểm đối xứng với M qua D.
1. (0,5đ) Cho AB=6cm; AC=8cm . Tính AM ?
2. (1đ) Chứng minh tứ giác AMCE là hình thoi.
3. (0,5đ) Chứng minh tứ giác ABME là hình bình hành.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: AM=5cm
2: Xét tứ giác AMCE có
D là trung điểm của AC
D là trung điểm của ME
Do đó: AMCE là hình bình hành
mà MA=MC
nên AMCE là hình thoi
3 Xét tứ giác ABME có
ME//AB
ME=AB
Do đó: ABME là hình bình hành
a: AM=BC/2=3cm
b: Xét tứ giác AMBE co
D là trung điểm chung của AB và ME
MA=MB
Do đó; AMBE là hình thoi
=>AE=MB=MC
a: Xét ΔBAC có BD/BA=BM/BC
nên MD//AC
=>MD vuông góc với AB
b: Xét tứgiác AMBE có
D là trung điểm chung của AB và ME
ME vuông góc với AB
Do đó: AMBE là hình thoi
c: AM=BC/2=4,5cm
=>C=4,5*4=18cm
Xét tứ giác ABMC có
D là trung điểm của BC
D là trung điểm của AM
Do đó: ABMC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABMC là hình chữ nhật
a: Xét tứ giác ADME có
góc ADM=góc AEM=góc DAE=90 độ
nên ADME là hình chữ nhật
b: Xét tứ giác PEDQ có
M là trung điểm chung của PD và EQ
PD vuông góc với EQ
Do đó: PEDQ là hình thoi
2: Xét tứ giác AEBM có
D là trung điểm của AB
D là trung điểm của ME
Do đó: AEBM là hình bình hành
mà MA=MB
nên AEBM là hình chữ nhật
a: BC=20cm
=>AM=10cm
b: Xét tứ giác AEBM có
D là trung điểm của AB
D là trung điểm của ME
Do đó: AEBM là hình bình hành
mà MA=MB
nên AEBM là hình thoi
a: BC=20cm
=>AM=10cm
b: Xét tứ giác AEBM có
D là trung điểm của AB
D là trung điểm của ME
Do đó: AEBM là hình bình hành
mà MA=MB
nên AEBM là hình thoi
1. Xét tam giác ABC vuông tại A:
\(BC^2=AB^2+AC^2\) (Định lý Pytago).
\(\Rightarrow BC=\sqrt{6^2+8^2}=\sqrt{100}=10\left(cm\right).\)
Xét tam giác ABC vuông tại A: AM là trung tuyến (gt).
\(\Rightarrow\) \(AM=\dfrac{1}{2}BC=\dfrac{1}{2}.10=5\left(cm\right).\)
2. M là trung điểm của BC (AM là trung tuyến của tam giác ABC).
\(\Rightarrow\) \(MC=MB.\)
Mà \(AM=\dfrac{1}{2}BC\left(cmt\right).\)
\(\Rightarrow\) \(MC=MB=AM=\dfrac{1}{2}BC.\)
Xét tứ giác AMCE:
+ D là trung điểm AC (gt).
+ D là trung điểm ME (E là điểm đối xứng với M qua D).
\(\Rightarrow\) Tứ giác AMCE là hình bình hành (dhnb).
Mà \(AM=MC\) (cmt).
\(\Rightarrow\) Tứ giác AMCE là hình thoi (dhnb).
3. Tứ giác AMCE là hình thoi (cmt). \(\Rightarrow\) \(AE=MC\) và \(AE\) // \(MC\) (Tính chất hình thoi).
Mà \(MB=MC\left(cmt\right).\)
\(\Rightarrow\) \(AE=MB.\)
Xét tứ giác AEMB có:
+ \(AE=MB\left(cmt\right).\)
+ \(AE\) // \(MB\left(cmt\right).\)
\(\Rightarrow\) Tứ giác ABME là hình bình hành (dhnb).