K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2016

a) Theo định lý Pi-ta-go

Ta có : \(\sqrt{20^2+48^2}\)=52

                Vậy tam giác vuông tại A.

b

31 tháng 3 2020

A.    áp dụng định lý pytago trong tam giác abc ta có:

(ab2+ac2)=bc2

=>202+482=522(hợp lí)

=>tam giác abc vuông tại A

B.     ta có BH=CH=52:2=26

Xét tam giác ahc có :

CH2+AH2=AC2

=>AH2=AC2-CH2

=>AH2=482-262

=>AH2=1628

=>AH=40.34.....

5 tháng 2 2016

a/ ta có BC2=522=2704

AB2+AC2=20^2+48^2=400+2304=2704

vì 2704=2704 nên BC2=AB2+AC2 hay tam giác ABC vuông tại A

 

hnay ma nhập nên bài hình nhiều ==

a, Theo định lí Py ta go 

Ta cs : \(BC^2=AB^2+AC^2\)

\(52^2=20^2+48^2\)

\(52^2=2704\)

\(52=\sqrt{2704}=52\)

Vậy tam giác ABC vuông tại A ( theo định lí Py ta go đảo )

A B C 52cm 20cm 48cm H

Vì H nằm giữa B và C

=> HC = HB = 52 . 1/2 = 26cm 

Rồi AD định lí Py ta go 

19 tháng 3 2020

a. Áp dụng định lí Py-ta-go đảo

522=202+482

=> 2704 = 400 + 2304

=> 2704 = 2704

=> BC2=AB2+AC2

=> tam giác ABC vuông tại A

2 tháng 9 2019

28 tháng 1 2022

ABCH??20cm16 cm9 cm

Lg

*Áp dụng định lý py-ta-go ta có: (Δ AHC)

AC2=AH2+HC2

202=AH2+162

400=AH2+256

AH2=144

AH=√144 =12

*Áp dụng định lý py-ta-go ta có: (Δ AHB)

AB2=AH2+BH2

AB2=122+92

AB2=225

AB=√225 =15

 
16 tháng 8 2017

Ta có AB^2+AC^2=20^2+48^2=2704

      BC^2=52^2=2704

=> Tam giác ABC vuông tại A(định lí pytago đảo)

b, diện tích tg ABC =1/2AB.AC=1/2.20.48=480

StgABC=1/2AH.BC

<=> 480=1/2AH.52

=> AH=18,46

NV
27 tháng 7 2021

a.

Trong tam giác vuông ABC:

\(tan\widehat{ACB}=\dfrac{AB}{AC}\Rightarrow AC=AB.tan\widehat{ACB}=30.tan30^0=10\sqrt{3}\left(cm\right)\)

Áp dụng định lý Pitago:

\(BC=\sqrt{AB^2+AC^2}=20\sqrt{3}\left(cm\right)\)

\(\widehat{ABC}=90^0-\widehat{ACB}=60^0\)

b.

Áp dụng định lý Pitago:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{569}\left(cm\right)\)

\(tan\widehat{ABC}=\dfrac{AC}{AB}=\dfrac{13}{20}\Rightarrow\widehat{ABC}\approx33^0\)

\(\widehat{ACB}=90^0-\widehat{ABC}=57^0\)

5 tháng 1 2022

Áp dụng định lí PTG: \(AC=\sqrt{BC^2-AB^2}=16\left(cm\right)\)

Vậy \(S_{ABC}=\dfrac{1}{2}AB\cdot AC=\dfrac{1}{2}\cdot12\cdot16=96\left(cm^2\right)\)