Cho tam giác ABC có AB = 5 ;AC = 8 ; có \(\widehat{A}=60^0\)
a, tính BC và \(\widehat{B}\)
b, Tính độ dài các đường cao , các đường trung tuyến của tam giác ABC
c, Lấy D sao cho ABCD là hbh ..... Tính độ dài đường chéo BD và Diện tích hbh ABCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2:
ta có: AB<AC<BC(Vì 3cm<4cm<5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
bài 2:
ta có: AB <AC <BC (Vì 3cm <4cm <5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
HT mik làm giống bạn Dương Mạnh Quyết
AC=2/5AB=6(cm)
Xét ΔABC có AB-AC<BC<AB+AC
=>15-6<BC<15+6
=>9<BC<21
mà BC chia hết cho 3,5
nên BC=15(cm)
=>BC=AB
=>ΔABC cân tại B
Diện tích tam giác ABC là:
S = 1 2 A B . A C . sin A = 1 2 .5.6. sin 30 ° = 15 2
Chọn A
a. Ta có AC = \(\dfrac{2}{5}\)AB
=> AC = 15 .\(\dfrac{2}{5}\)= 6cm
Xét tam giác ABC theo bất đẳng thức tam giác ta có ;
AB - AC < BC < AB + AC
=> 15 - 6 < BC < 15 + 6
=> 9 < BC < 21(1)
Ta lại có BC chia hết cho 3,5 => BC là bội của 3,5 (2)
Từ (1) và (2) ta được BC = 14 cm
b. Tam giác ABC là tam giác nhọn