Tìm M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x 3 - 3 x 2 - 9 x + 35 trên đoạn [-4;4].
A. M = 40 ; m = - 8
B. M = 15 ; m = - 41
C. M = 40 ; m = 8
D. M = 40 ; m = - 41
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A.
Hàm số liên tục trên đoạn [-4;4]
y' = 3x2 – 6x – 9, y’ = 0 => x2 – 2x – 3 = 0
Ta có y(-4) = -41; y(4) = 15; y(-1) = 40; y(3) = 8
Vậy M = max[-4;4]y = 40 và m = min[-4;4]y = -41
Dựa vào bảng biến thiên ta có
M = f ( - 1 ) = 3 , m = f ( 0 ) = 0 ⇒ M + m = 3
Chọn đáp án A.
Chọn B
Hàm số xác định và liên tục trên đoạn [1;4]. Đặt y = f(x)
Ta có:
Có
Vậy m + M = 16.
Chọn A
Ta có:
Với nên f(x) đồng biến trên ℝ
Với nên f(x) nghich biến trên ℝ
Suy ra: Vì f(x) nghich biến trên ℝ nên và
Từ đây ,ta suy ra:
=> chọn đáp án A
Đáp án D
y ' = 3 x 2 - 6 x - 9
y ' = 0 ⇔ x = - 1 x = 3
y ( - 4 ) = - 41 , y ( 4 ) = 15 , y ( - 1 ) = 40 , y ( 3 ) = 8