Cho đường thẳng d: ax+b. Tìm a,b biết đường thẳng d đi qua điểm A(0;4) và khoảng cách từ O đến đường thẳng d = \(\frac{12}{5}\)( với O(0;0) ) là gốc tọa độ . Xin giúp mình với ạ :((
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì (d) đi qua A(1;2) và B(2;0) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=2\\2a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-a=2\\a+b=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=2-a=2-\left(-2\right)=4\end{matrix}\right.\)
Vậy: (d): y=-2x+4
Đường thẳng y = ax + b đi qua điểm A ( 3 ; 2 ) ⇔ − 3 a + 2 b = 2 ( 1 )
Đường thẳng y = ax + b đi qua điểm B (0; 2) ⇔ 0.a + b = 2 (2)
Từ (1) và (2) ta có hệ:
3 a + b = 2 0. a + b = 2 ⇔ b = 2 3 a + 2 = 2 ⇔ a = 0 b = 2
Vậy a = 0; b = 2
Đáp án: A
Vì (d)//(d') nên a=-4
Vậy: (d): y=-4x+b
Thay x=-1 và y=2 vào (d), ta được:
b+4=2
hay b=-2
Đáp án C
Đường thẳng (d) đi qua A(0; 1) nên ta có: 1 = a.0 + b ⇒ b = 1
Mà đường thẳng (d) song song với đường thẳng (d') và hệ số góc của (d') là 2.
Khi đó ta có: a = 2
Vậy giá trị cần tìm là a = 2, b = 1