K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2021

Em ơi hình như ảnh bị lỗi ấy!

26 tháng 12 2021

\(a,HS\text{Đ}B\Leftrightarrow a>0\\ \Leftrightarrow2m-4>0\\ \Leftrightarrow m>2\\ b,Thay:x_A=2;y_A=3.v\text{à}oHS:\\ y_A=\left(2m-4\right).x_A+m-1\\ \Leftrightarrow3=\left(2m-4\right).2+m-1\\ \Leftrightarrow5m=12\\ \Leftrightarrow m=\dfrac{12}{5}\\ c,m=3\Rightarrow y=\left(2.3-4\right)x+3-1=2x+2\)

Em tự vẽ đồ thi cho pt y=2x+2 nha!

13 tháng 1 2021

a.   Để hs (1) đồng biến trên R :

        \(\Leftrightarrow-m-18>0\)

        \(\Leftrightarrow-m>18\)

        \(\Leftrightarrow m< -18\)

     Vậy \(m< -18\) thì hs (1) đồng biến trên R

b.   Do ĐTHS (1) // đ.t \(y=-19x-5\) nên :

       \(\left\{{}\begin{matrix}-m-18=-19\\3m+1\ne-5\end{matrix}\right.\)    \(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m\ne-2\end{matrix}\right.\)

c.   Vì ĐTHS (1) đi qua điểm \(A\left(-1;2\right)\) nên ta có : x = -1 và y = 2

      Thay x = -1 và y = 2 vào (1) ta được :

            \(2=\left(-m-18\right).\left(-1\right)+3m+1\)

       \(\Leftrightarrow2=m+18+3m+1\)

       \(\Leftrightarrow-17=4m\)

       \(\Leftrightarrow m=\dfrac{-17}{4}\)

13 tháng 1 2021

a. hàm số (1) đồng biến trên R khi -m-18 > 0 <=> m < -18 .  Vậy m < -18 thì hàm số (1) đồng biến.        b. đồ thị hàm số (1) song song với đường thẳng y= -19x-5             <=> -m-18=-19 và 3m+1 khác -5  <=> m= 1   và m khác 4/3 .                               Vậy m=1 và m khác 4/3 thì đồ thị hàm số ( 1 ) song song với đường thẳng y= -19x-5  .     c.  đồ thị hàm số  y=(-m-18)x+3m+1 đi qua A(-1;2) => x=-1 ; y=2                 => 2=(-m-18)*(-1)+3m+1 <=>  2= m+18+3m+1 <=> 4m=17 <=> m=17/4 .            Vậy m=17/4 thì đồ thị hàm số  y=(-m-18)x+3m+1 đi qua A(-1;2)                                              

 

 

 

 

a) Để hàm số đạt giá trị nhỏ nhất bằng 0 khi x=0 thì 2m-1>0

\(\Leftrightarrow2m>1\)

hay \(m>\dfrac{1}{2}\)

b) Để hàm số đồng biến khi x<0 và nghịch biến khi x>0 thì 2m-1<0

\(\Leftrightarrow2m< 1\)

hay \(m< \dfrac{1}{2}\)

26 tháng 12 2021

a, để hàm số nghịch biến thì \(2m+3< 0\Rightarrow m< -\dfrac{3}{2}\)

để hàm số đồng biến thì \(2m+3>0\Rightarrow m>-\dfrac{3}{2}\)

b, Để hàm số y = (2m+3)x-2 song song với đường thẳng y = -5x+3 thì 

\(\left\{{}\begin{matrix}2m+3=-5\\-2\ne3\end{matrix}\right.\Rightarrow m=-4\)

13 tháng 1 2021
B là đúng nha😉
13 tháng 1 2021
Mik hok sai đâu,B đấy
23 tháng 12 2021

a: Để hàm số là hàm số bậc nhất thì 2m-3<>0

hay m<>3/2

b: Để hàm số đồng biến thì 2m-3>0

hay m>3/2

Để hàm số nghịch biến thì 2m-3<0

hay m<3/2

1: Vì (d) đi qua A(-2;5) và B(1;-4) nên ta có hệ phương trình:

-2a+b=5 và a+b=-4

=>a=-3; b=-1

2: 

a: Để hàm số đồng biến thì 2m-1>0

=>m>1/2

a: Thay x=1 và y=4 vào (1), ta được:

\(m\cdot1+1=4\)

=>m+1=4

=>m=3

Thay m=3 vào y=mx+1, ta được:

\(y=3\cdot x+1=3x+1\)

Vì a=3>0

nên hàm số y=3x+1 đồng biến trên R

b: Để đồ thị hàm số (1) song song với (d) thì

\(\left\{{}\begin{matrix}m^2=m\\m+1\ne1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\left(m-1\right)=0\\m\ne0\end{matrix}\right.\)

=>m-1=0

=>m=1

AH
Akai Haruma
Giáo viên
9 tháng 12 2023

Lời giải:

a. Để hàm đồng biến thì $m-1>0\Leftrightarrow m>1$

Để hàm nghịch biến thì $m-1<0\Leftrightarrow m< 1$

b. Để đths đi qua điểm $A(-1;1)$ thì:

$y_A=(m-1)x_A+m$

$\Leftrightarrow 1=(m-1)(-1)+m=1-m+m$

$\Leftrightarrow 1=1$ (luôn đúng)

Vậy đths luôn đi qua điểm A với mọi $m$

c.

$x-2y=1\Rightarrow y=\frac{1}{2}x-\frac{1}{2}$

Để đths đã cho song song với đths $y=\frac{1}{2}x-\frac{1}{2}$ thì:

\(\left\{\begin{matrix} m-1=\frac{1}{2}\\ m\neq \frac{-1}{2}\end{matrix}\right.\Leftrightarrow m=\frac{3}{2}\)

d,

ĐTHS cắt trục hoành tại điểm có hoành độ $\frac{2-\sqrt{3}}{2}$, tức là ĐTHS đi qua điểm $(\frac{2-\sqrt{3}}{2}; 0)$

$\Rightarrow 0=(m-1).\frac{2-\sqrt{3}}{2}+m$

$\Leftrightarrow m=\frac{2-\sqrt{3}}{4-\sqrt{3}}$