K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2016

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các bài toán hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

1 tháng 1 2016

Tick cho mình đi mình giải cho

a: Xét (O) có

CM,CA là các tiếp tuyến

nen CM=CA và OC là phân giác của góc MOA(1)

mà OM=OA 

nên OC vuông góc với MA tại trung điểm của MA

Xét (O) có

DM,DB là các tiếp tuyến

nên DM=DB và OD là phân giác của góc MOB(2)

mà OM=OB

nên OD vuông góc với MB tại trung điểm của MB

Từ (1)và (2) suy ra góc COD=1/2*180=90 độ

=>O nằm trên đường tròn đường kính DC

b: Xét tứ giác MIOK có

góc MIO=góc IOK=góc MKO=90 độ

nên MIOK là hình chữ nhật

=>MO=IK

c: Xét hình thang ABDC có

O,O' lần lượt là trung điểm của AB,CD

nên OO' là đường trung bình

=>OO' vuông góc với AB

=>AB là tiếp tuyến của (O')

a: góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

b: góc AHG=góc BHD=90 độ-góc HBD=góc ACB

góc AGH=1/2*sđ cung AB=góc ACB

=>góc AHG=góc AGH

=>ΔAGH cân tại A

1 tháng 10 2015

Bạn tự vẽ hình nha.

a)  Qua A kẻ tiếp tuyến chung trong của (O) và (O') cắt d tại N.

Theo tính chất 2 tiếp tuyến cắt nhau ta có:  NA = NB và NA = NC . Do đó  NB = NC => NA là trung tuyến của tam giác ABC và \(NA=\frac{1}{2}BC\). Từ đó => tam giác ABC vuông tại A.

b) Theo phần a ta đã chứng minh được N là trung điểm BC thì AN là tiếp tuyến chung của 2 đường tròn => M trùng với N. Vậy AM là tiếp tuyến chung của 2 đường tròn.

5 tháng 6 2019

Hình tự vẽ

Theo đề có AB là tiếp tuyến của (O) nên \(AB\perp OB\Rightarrow\widehat{ABO}=90^o\)

Trong tam giác vuông ABO có : OB = R ; OA = 2R nên cos \(\widehat{AOB}=\frac{OB}{OA}=\frac{1}{2}\Rightarrow\widehat{AOB}=60^o\)

Theo t/c 2 tiếp tuyến cắt nhau nên ta có AO là phân giác \(\widehat{BOC}\Rightarrow\widehat{AOC}=60^o\) 

mà \(\widehat{AOC}\)và \(\widehat{COD}\)kề bù nên suy ra \(\widehat{COD}=120^o\)

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

=>ΔACB vuông tại C

Xét ΔBAM vuông tại B có BC là đường cao

nên góc ABC=góc AMB

Xét tứ giác ACBD có

O là trung điểm chung của AB và CD

AB=CD

=>ACBDlà hình chữ nhật

=>góc ADC=góc ABC=góc AMN

=>góc CDN+góc CMN=180 độ

=>CMND là tứ giác nội tiếp

b: Xét (O) có

ΔABD nội tiếp

AB là đường kính

=>ΔABD vuông tại D

Xét ΔBAN vuông tại B có BD là đường cao

nên AD*AN=AB^2

Xét ΔBMA vuông tại B có BC là đường cao

nên AC*AM=AB^2

=>AC*AM=AD*AN