K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2017

ko bít ^_^!

!@#$%^&*()_+L:"><?/.,~`

= ???????????/

4 tháng 5 2017

\(0\le x,y,z\le2\Leftrightarrow xyz+\left(2-x\right)\left(2-y\right)\left(2-z\right)\ge0\)

\(\Leftrightarrow8-4\left(x+y+z\right)+2\left(xy+yz+zx\right)\ge0\)

\(\Leftrightarrow xy+yz+xz\ge2\)

xét \(x^2+y^2+z^2=\left(x+y+z\right)^2-2\left(xy+yz+xz\right)=9-2\left(xy+yz+xz\right)\le9-2.2=5\)

Dấu = xảy ra khi \(\left(x;y;z\right)=\left(0;1;2\right)\)và các hoán vị

20 tháng 2 2019

a) \(\hept{\begin{cases}\left(x-1\right)\left(2x+y\right)=0\\\left(y+1\right)\left(2y-x\right)=0\end{cases}}\)
\(\cdot x=1\Rightarrow\hept{\begin{cases}0=0\\\left(y+1\right)\left(2y-1\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\y=-1;y=\frac{1}{2}\end{cases}}\)
\(\cdot y=-1\Rightarrow\hept{\begin{cases}\left(x-1\right)\left(2x-1\right)=0\\0=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1;x=\frac{1}{2}\\0=0\end{cases}}\)
\(\cdot x=2y\Rightarrow\hept{\begin{cases}\left(2y-1\right)5y=0\\0=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=0\Rightarrow x=0\\y=\frac{1}{2}\Rightarrow x=1\end{cases}}\)
\(y=-2x\Rightarrow\hept{\begin{cases}0=0\\\left(1-2x\right)5x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\Rightarrow y=-1\\x=0\Rightarrow y=0\end{cases}}\)

b) \(\hept{\begin{cases}x+y=\frac{21}{8}\\\frac{x}{y}+\frac{y}{x}=\frac{37}{6}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\\left(\frac{21}{8}-y\right)^2+y^2=\frac{37}{6}y\left(\frac{21}{8}-y\right)\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\2y^2-\frac{21}{4}y+\frac{441}{64}=-\frac{37}{6}y^2+\frac{259}{16}y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\1568y^2-4116y+1323=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{8}\\y=\frac{9}{4}\end{cases}}hay\hept{\begin{cases}x=\frac{9}{4}\\y=\frac{3}{8}\end{cases}}\)

c) \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{z^2}=\left(2-\frac{1}{x}-\frac{1}{y}\right)^2\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x-y\right)^2=-4x^2y^2+2xy\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}8x^2y^2-4x^2y-4xy^2+x^2+y^2-2xy+2xy=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4x^2y^2-4x^2y+x^2+4x^2y^2-4xy^2+y^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x\right)^2+\left(2xy-y\right)^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=\frac{-1}{2}\end{cases}}\)
d) \(\hept{\begin{cases}xy+x+y=71\\x^2y+xy^2=880\end{cases}}\). Đặt \(\hept{\begin{cases}x+y=S\\xy=P\end{cases}}\), ta có: \(\hept{\begin{cases}S+P=71\\SP=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P\left(71-P\right)=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P^2-71P+880=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S=16\\P=55\end{cases}}hay\hept{\begin{cases}S=55\\P=16\end{cases}}\)
\(\cdot\hept{\begin{cases}S=16\\P=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=16\\xy=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y\left(16-y\right)=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y^2-16y+55=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=5\\y=11\end{cases}}hay\hept{\begin{cases}x=11\\y=5\end{cases}}\)

\(\cdot\hept{\begin{cases}S=55\\P=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=55\\xy=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y\left(55-y\right)=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y^2-55y+16=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{55-3\sqrt{329}}{2}\\y=\frac{55+3\sqrt{329}}{2}\end{cases}}hay\hept{\begin{cases}x=\frac{55+3\sqrt{329}}{2}\\y=\frac{55-3\sqrt{329}}{2}\end{cases}}\)

e) \(\hept{\begin{cases}x\sqrt{y}+y\sqrt{x}=12\\x\sqrt{x}+y\sqrt{y}=28\end{cases}}\). Đặt \(\hept{\begin{cases}S=\sqrt{x}+\sqrt{y}\\P=\sqrt{xy}\end{cases}}\), ta có \(\hept{\begin{cases}SP=12\\P\left(S^2-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\P\left(\frac{144}{P^2}-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\2P^4+28P^2-144P=0\end{cases}}\)
Tự làm tiếp nhá! Đuối lắm luôn

25 tháng 5 2018

Ta có \(\hept{\begin{cases}\text{(x+y)(y+z)=187}\\\text{(y+z)(z+x)=154}\\\text{(z+x)(x+y)=238}\end{cases}}\)\(\Rightarrow\)(x+y)2(y+z)2(z+x)2=187.154.238    \(\Rightarrow\)  (x+y)(y+z)(z+x)=2618

  \(\Rightarrow\)\(\hept{\begin{cases}z+x=14\\x+y=17\\y+z=11\end{cases}}\)   \(\Rightarrow\) 2(x+y+z)=14+17+11=42  \(\Rightarrow\) x+y+z=21   \(\Rightarrow\) \(\hept{\begin{cases}y=7\\z=4\\x=10\end{cases}}\)

25 tháng 5 2018

đặt x+y=a,y+z=b,z+y=c

hPt trở thành :ab=187,bc=154,ca=238

nhân hết 3 vế với nhau:\(a^2b^2c^2=6853924\)

 Suy ra \(abc=2613\)nên c=abc:ab=2613:187=14.b và c tính tương tự

trở về ẩn cũ r giải nốt đi

21 tháng 1 2019

\(C,\hept{\begin{cases}\left|x-1\right|+\left|y-2\right|=1\\\left|x-1\right|+3y=3\left(#\right)\end{cases}}\)

\(\Rightarrow3y-\left|y-2\right|=2\)(1)

*Nếu y > 2 thì 

\(\left(1\right)\Leftrightarrow3y-y+2=2\)

        \(\Leftrightarrow y=0\)(Loại do ko tm KĐX)

*Nếu y < 2 thì

\(\left(1\right)\Leftrightarrow3y-2+y=2\)

\(\Leftrightarrow y=1\)(Tm KĐX)

Thay y = 1 vào (#) được \(\left|x-1\right|+3=3\)

                                    \(\Leftrightarrow x=1\)

Vậy hệ có nghiệm \(\hept{\begin{cases}x=1\\y=1\end{cases}}\)

21 tháng 1 2019

\(A,ĐKXĐ:x\left(y+1\right)>0\)

\(\hept{\begin{cases}x+y=5\left(1\right)\\\sqrt{\frac{x}{y+1}}+\sqrt{\frac{y+1}{x}}=2\left(2\right)\end{cases}}\)

Giải (2) 

Có bđt \(\frac{a}{b}+\frac{b}{a}\ge2\left(a,b>0\right)\)

Nên \(\sqrt{\frac{x}{y+1}}+\sqrt{\frac{y+1}{x}}\ge2\)

Dấu "=" xảy ra \(\Leftrightarrow x=y+1\)

Thế x = y + 1 vảo pt (1) được

\(y+1+y=5\)

\(\Leftrightarrow y=2\)

\(\Rightarrow x=2+1=3\)

Thấy x = 3 ; y = 2 thỏa mãn ĐKXĐ
Vậy hệ có ngihiemej \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)

1 tháng 9 2019

\(\hept{\begin{cases}x+y+z=0\left(1\right)\\2x+3y+z=0\left(2\right)\end{cases}}\)

Trừ (2) cho (1) ta được:\(\left(2x+3y+z\right)-\left(x+y+z\right)=x+2y+z=0\)(3)

Trừ (3) cho (1) ta được: \(\left(x+2y+z\right)-\left(x+y+z\right)=y=0\)

Thay x = 0 vào hệ phương trình ta được: \(\hept{\begin{cases}x+z=0\left(4\right)\\2x+z=0\left(5\right)\end{cases}}\)

Trừ (5) cho (4) ta được: \(\left(2x+z\right)-\left(x+z\right)=x=0\)

\(\Rightarrow z=0\)

Vậy \(x=y=z=0\)

21 tháng 1 2018

Gọi 3 phương trình đó theo thứ tự là (1); (2); (3)

Lấy (1) - (2) ta được

x2 - z2 - 2x + 2z = 0

<=> (x - z)(x + z - 2) = 0

Làm tiếp sẽ ra

20 tháng 1 2018

Em mới học lớp 7 nên không biết làm đúng không nữa

Ta có hệ phương trình:

\(\hept{\begin{cases}x^2+y^2-2\left(x+y\right)=0\\y^2+z^2-2\left(y+z\right)=0\\x^2+z^2-2\left(x+z\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2+y^2=2\left(x+y\right)=2x+2y\\y^2+z^2=2\left(y+z\right)=2y+2z\\x^2+z^2=2\left(x+z\right)=2x+2z\end{cases}}}\)(1)

Mà \(\hept{\begin{cases}x^2+y^2\ge0\\y^2+z^2\ge0\\x^2+z^2\ge0\end{cases}}\)Do đó \(\hept{\begin{cases}2x+2y\ge0\\2y+2z\ge0\\2x+2z\ge0\end{cases}}\)Suy ra \(x,y,z\ge0\)(2)

Từ (1) và (2):

\(\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}\)hoặc \(\hept{\begin{cases}x=2\\y=2\\z=2\end{cases}}\)

24 tháng 9 2016

Ta có : y(x+y+z) + x(x+y+z) + z(x+y+z) = 18 +(-12) + 3

=>  (x+y+z)^2  = 9 

=> x+y+z = 3 hoặc -3

Xét x+y+z = 3

=> y = 6 ; x = -4 ; z = 1 

Xét x+y+z = -3

=> y = -6 ; x= 4 ; z = -1

Vậy (x;y;z) = (6;-4;1) ; (-6;4;-1)

28 tháng 2 2019

Ây da :D Con ông Lệ bà Việt đây chứ đâu ? Á HÁ HÁ HÁ , gà :3 ko biết làm ak ?

1 tháng 3 2020

\(\frac{x}{x-y}+\frac{y}{y-z}+\frac{z}{z-x}=0\left(1\right)\)

\(\frac{x}{\left(x-y\right)^2}+\frac{y}{\left(y-z\right)^2}+\frac{z}{\left(z-x\right)^2}=0\)

\(\left(1\right)\Rightarrow\left(\frac{x}{x-y}\right)^2+\left(\frac{y}{y-z}\right)^2+\left(\frac{z}{z-x}\right)^2=0\)

\(\Leftrightarrow\frac{x^2}{\left(x-y\right)^2}+\frac{y^2}{\left(y-z\right)^2}+\frac{z^2}{\left(z-x\right)^2}=0\)

Trừ vế với vế

\(\frac{x^2-x}{\left(x-y\right)^2}+\frac{y^2-y}{\left(y-z\right)^2}+\frac{z^2-z}{\left(z-x\right)^2}=0\)

\(\Leftrightarrow\hept{\begin{cases}x^2-x=0\\y^2-y=0\\z^2-z=0\end{cases}}\)

<=> x=0 hoặc x=1; y=0 hoặc y=1; z=0 hoặc z=1

Mà \(x\ne y\ne z\)=> PT vô nghiệm