Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay x=7 và y=2 vào (d), ta được:
7(m+1)+m-1=2
=>7m+7+m-1=2
=>8m+6=2
=>8m=-4
=>\(m=-\dfrac{1}{2}\)
b: Thay x=2 vào y=3x-4, ta được:
\(y=3\cdot2-4=2\)
Thay x=2 và y=2 vào (d), ta được:
2(m+1)+m-1=2
=>2m+2+m-1=2
=>3m+1=2
=>3m=1
=>\(m=\dfrac{1}{3}\)
c: Tọa độ giao điểm của hai đường d1 và d2 là:
\(\left\{{}\begin{matrix}2x-1=x-8\\y=2x-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-x=-8+1\\y=2x-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-7\\y=2\left(-7\right)-1=-15\end{matrix}\right.\)
Thay x=-7 và y=-15 vào d, ta được:
\(-7\left(m+1\right)+m-1=-15\)
=>-7m-7+m-1+15=0
=>-6m+7=0
=>-6m=-7
=>\(m=\dfrac{7}{6}\)
a: Thay x=1 và y=-1 vào (d), ta được:
\(\left(m-2\right)\cdot1+m+1=-1\)
=>m-2+m+1=-1
=>2m-1=-1
=>2m=0
=>m=0
b: Thay y=0 vào y=x+2, ta được:
x+2=0
=>x=-2
Thay x=-2 và y=0 vào y=(m-2)x+m+1, ta được:
-2(m-2)+m+1=0
=>-2m+4+m+1=0
=>5-m=0
=>m=5
c: y=(m-1)x+4
=>\(\left(m-1\right)x-y+4=0\)
Khoảng cách từ O(0;0) đến (d) là:
\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot\left(m-1\right)+0\cdot\left(-1\right)+4\right|}{\sqrt{\left(m-1\right)^2+\left(-1\right)^2}}=\dfrac{4}{\sqrt{\left(m-1\right)^2+1}}\)
Để \(d\left(O;\left(d\right)\right)=2\) thì \(\dfrac{4}{\sqrt{\left(m-1\right)^2+1}}=2\)
=>\(\sqrt{\left(m-1\right)^2+1}=2\)
=>\(\left(m-1\right)^2+1=4\)
=>\(\left(m-1\right)^2=3\)
=>\(m-1=\pm\sqrt{3}\)
=>\(m=\pm\sqrt{3}+1\)
a: Thay x=4 và y=1 vào y=(m+1)x-3, ta được:
4(m+1)-3=1
=>4m+4-3=1
=>4m+1=1
hay m=0
b: Để hai đường vuông góc thì 5(m+1)=-1
=>m+1=-1/5
hay m=-6/5
c: Thay x=2 vào y=3x-1, ta được:
\(y=3\cdot2-1=5\)
Thay x=2 và y=5 vào (d), ta được:
2(m+1)-3=5
=>2(m+1)=8
=>m+1=4
hay m=3
a. để hàm số đi qua M(-1,1) thì ta có
\(1=\left(2m-1\right)\times\left(-1\right)+m+1\Leftrightarrow m=1\)
b.Hàm số cắt trụ tung tại điểm \(A\left(0,m+1\right)\)
Hàm số cắt trục hoành tại điểm \(B\left(\frac{-m-1}{2m-1},0\right)\)
Để OAB là tam giác cân thì ta có \(OA=OB\ne0\Leftrightarrow\left|m+1\right|=\left|\frac{-m-1}{2m-1}\right|\ne0\)
\(\Leftrightarrow\left|2m-1\right|=1\Leftrightarrow\orbr{\begin{cases}m=0\\m=1\end{cases}}\)
a, Để đồ thị đi qua điểm M(-1;1) thì ta thay x = -1, y = 1 vào hàm số ta có:
\(1=\left(2m-1\right).\left(-1\right)+m+1\)
=>\(m=1\)
b,\(y=\left(2m-1\right)x+m+1\)
Cho \(x=0=>y=m+1=>OA=|m+1|\)
Cho \(y=0=>x=\frac{-m-1}{2m-1}=>B\left(\frac{-m-1}{2m-1};0\right)\)
\(=>OB=|\frac{-m-1}{2m-1}|=\frac{|m+1|}{|2m-1|}\)
\(\Delta AOB\)cân \(< =>\hept{\begin{cases}OA=OB\\OA>0\end{cases}}< =>\hept{\begin{cases}|m+1|\\|m+1|>0\end{cases}}\)
\(\hept{\begin{cases}|2m-1|\\m\ne-1\end{cases}< =>\hept{\begin{cases}2m-1=1\\2m-1=-1\end{cases}}}< =>\hept{\begin{cases}m=1\\m=0\end{cases}}\)
Vậy với m = 0 hoặc m = 1 thì đồ thị hàm số thỏa mãn yêu cầu của bài toán