cho M=3+3^2+3^3+....+3^99+3^100
a.M có chia hết cho 5;12 không vì sao?
b.Tìm số tự nhiên n biết rằng 2M+3=3^n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=5+52+...+599+5100
=(5+52)+...+(599+5100)
=5.(1+5)+...+599.(1+5)
=5.6+...+599.6
=6.(5+...+599) chia hết cho 6 (dpcm)
Ccá câu khcs bạn cứ dựa vào câu a mà làm vì cách làm tương tự chỉ hơi khác 1 chút thôi
Chúc bạn học giỏi nha!!
\(A=5+5^2+5^3+...+5^{100}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...\left(5^{99}+5^{100}\right)\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{99}\left(1+5\right)\)
\(=5.6+5^3.6+...+5^{99}.6\)
\(=6\left(5+5^3+...+5^{99}\right)⋮6\)(đpcm)
\(B=2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(=2.31+...+2^{96}.31\)
\(=31\left(2+...+9^{96}\right)⋮31\)(đpcm)
\(C=3+3^2+3^3+...+3^{60}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{59}\left(1+3\right)\)
\(=3.4+3^3.4+...+3^{59}.4\)
\(=4\left(3+3^3+...+3^{59}\right)⋮4\)(đpcm)
\(C=3+3^2+3^3+...+3^{60}\)
\(=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)
\(=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)
\(=3.13+...+3^{58}.13\)
\(=13\left(3+...+3^{58}\right)⋮13\)(đpcm)
\(A\text{=}1-2+3-4+...+99-100\)
\(A\text{=}\left(1-2+3-4\right)+....+\left(97-98+99-100\right)\)
\(A\text{=}-2.25\)
\(A\text{=}-50\)
\(\Rightarrow A⋮2⋮5\)
\(\Rightarrow A⋮̸3\)
\(D=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)\)
\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^9\left(1+3+3^2\right)\)
\(=13+13.3^3+...+13.3^9\Rightarrow D⋮13\)
\(D=\left(1+3+3^2+3^3\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(=\left(1+3+3^2+3^3\right)+...+3^8\left(1+3+3^2+3^3\right)\)
\(=40+40.3^4+40.3^8\Rightarrow D⋮40\)
Biểu thức E làm tương tự, ý đầu ghép 3 số với nhau được nhân tử là 91 chia hết 13, ý sau ghép 4 số được nhân tử 820 chia hết 41
\(\overline{ab}-\overline{ba}=10a+b-\left(10b+a\right)=9\left(a-b\right)⋮9\)
\(\overline{abc}-\overline{cba}=100a+10b+c-\left(100c+10b+a\right)=99\left(a-c\right)⋮99\)
Câu sau bạn ghi đề sai nhé, đề đúng phải là ab+cd chia hết 99
\(\overline{abcd}=100\overline{ab}+\overline{cd}=99\overline{ab}+\left(\overline{ab}+\overline{cd}\right)⋮99\Rightarrow\overline{ab}+\overline{cd}⋮99\)
\(\overline{abcd}=100\overline{ab}+\overline{cd}=101\overline{ab}-\overline{ab}+\overline{cd}=101\overline{ab}-\left(\overline{ab}-\overline{cd}\right)\)
Mà \(101\overline{ab}⋮101\Rightarrow\overline{ab}-\overline{cd}⋮101\)
\(\overline{abcdef}=10000\overline{ab}+100\overline{cd}+\overline{ef}=9999\overline{ab}+99\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{ef}\right)\)
Do \(9999⋮11\) ; \(99⋮11\); \(\overline{ab}+\overline{cd}+\overline{ef}⋮11\Rightarrow\overline{abcdef}⋮11\)
1. Gọi số tự nhiên bất kì là a
Ta có: a + (a+1) + (a+2) = 3a + 3 chia hết cho 3
Vậy…
2. Ta có 2^15 = 2.2…2.2 (15 số 2) chia hết cho 2
Lại có 424 = 2.212 chia hết cho 2
Vậy…
\(6+6^2+\cdot\cdot\cdot+6^{10}\)
\(=6\cdot\left(1+6\right)+6^3\cdot\left(1+6\right)+\cdot\cdot\cdot+6^9\cdot\left(1+6\right)\)
\(=6\cdot7+6^3\cdot7+\cdot\cdot\cdot+6^9\cdot7\)
\(=7\cdot\left(6+6^3+\cdot\cdot\cdot+6^9\right)⋮7\)
\(\Rightarrow6+6^2+\cdot\cdot\cdot\cdot+6^{10}⋮7\)
bọn học ngu
a)Số các số có ở M là:
(100-1):1+1=100(số)
Ta có: 100:4=25
ta chia dãy só trên thành 25 nhóm, mỗi nhóm gồm 4 số như sau:
M=(3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+...+(3^97+3^98+3^99+3^100)
= 3(1+3+3^2+3^3)+3^5(1+3+3^2+3^3)+...+3^97(1+3+3^2+3^3)
= 3 x 40 + 3^5 x 40 + ...+ 3^97 x 40
= 40 x ( 3+3^5+...+3^97)
Vì 40 chia hết cho 5 nên 40 x (3+3^5+.....+3^97)
=> M chia hết cho 5
Ta có: 100 : 2 = 50
Ta chia dãy số trên thành 50 nhóm mỗi nhóm gồm 2 số như sau :
M = ( 3 + 3^2 )+( 3^3 + 3^4 )+....+( 3^99 + 3^100 )
= 3(1+3)+3^3(1+3)+...+3^99(1+3)
=3x4+3^3x4+...+3^99x4
= 4 x (3+3^3+...+3^99)
=> M chia hết cho 4
Mà M chia hết cho 3
Từ hai diều trên => M chia hết cho 12
Vậy M chia hết cho 5 và 12.
b)M=3+3^2+3^3+...+3^100
3M = 3 x ( 3+3^2+3^3+...+3^100)
3M=3^2+3^3+3^4+...+3^101
3M - M =(3^2+3^3+3^4+...+3^101)-(3+3^2+3^3+3^4+...+3^100)
2M = 3^101 - 3
=>2M+3 = 3^101 - 3 + 3 = 3^101
=> n = 101
Vậy n=101