K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2020

\(y'=\left(m^2-2m\right)x^2-2mx+1\)

Để hàm số đồng biến trên \(\left(-\infty;0\right)\) thì y'>0 với \(\forall x\in\)\(\left(-\infty;0\right)\)

TH1: \(m^2-2m=0\)\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=2\end{matrix}\right.\)

Thay m=0 vào y' ta có: y'=1>0 \(\forall x\in\)\(\left(-\infty;0\right)\) (TM)

Thay m=2 vào y' ta có: y'=-4x+1>0\(\Leftrightarrow1>4x\Leftrightarrow\frac{1}{4}>x\) (TM)

TH2:\(m^2-2m\ne0\)\(\Leftrightarrow\left[{}\begin{matrix}m\ne0\\m\ne2\end{matrix}\right.\)

Để y'>0 \(\forall x\in\)\(\left(-\infty;0\right)\) thì \(\left\{{}\begin{matrix}m^2-2m>0\\\Delta\le0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x< 0\\x>2\end{matrix}\right.\\4m^2-4\left(m^2-2m\right)\le0\end{matrix}\right.\) \(\Leftrightarrow m< 0\)

Vậy m=0, m=2 và m<0 thì hs đồng biến trên\(\left(-\infty;0\right)\)

24 tháng 9 2023

help

NV
18 tháng 6 2021

\(g'\left(x\right)=0\Rightarrow x=0\)

Ta thấy \(g\left(x\right)\) đồng biến trên \(\left(0;+\infty\right)\)

\(\Rightarrow g\left(f\left(x\right)\right)\) đồng biến khi \(f\left(x\right)\ge0\)

\(\Rightarrow g\left(f\left(x\right)\right)\) đồng biến trên \(\left(3;+\infty\right)\) khi \(f\left(x\right)\ge0\) ; \(\forall x>3\)

\(\Leftrightarrow x^2-4x\ge-m\) ; \(\forall x>3\)

\(\Leftrightarrow-m\le\min\limits_{x>3}\left(x^2-4x\right)\)

\(\Rightarrow-m\le-3\Rightarrow m\ge3\)

NV
29 tháng 7 2021

3.

\(y'=\dfrac{3m-1}{\left(x+3m\right)^2}\)

Hàm nghịch biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}3m-1< 0\\-3m\le6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{1}{3}\\m\ge-2\end{matrix}\right.\)

\(\Rightarrow-2\le m< \dfrac{1}{3}\Rightarrow m=\left\{-2;-1;0\right\}\)

4.

\(y'=\dfrac{3m-2}{\left(x+3m\right)^2}\)

Hàm đồng biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}3m-2>0\\-3m\ge-6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{2}{3}\\m\le2\end{matrix}\right.\)

\(\Rightarrow\dfrac{2}{3}< m\le2\Rightarrow m=\left\{1;2\right\}\)

NV
12 tháng 1 2022

\(y'=x^2-2\left(m-1\right)x+3\left(m-1\right)\)

Hàm đồng biến trên khoảng đã cho khi với mọi \(x>1\) ta luôn có:

\(g\left(x\right)=x^2-2\left(m-1\right)x+3\left(m-1\right)\ge0\)

\(\Rightarrow\min\limits_{x>1}g\left(x\right)\ge0\)

Do \(a=1>0;-\dfrac{b}{2a}=m-1\)

TH1: \(m-1\ge1\Rightarrow m\ge2\)

\(\Rightarrow g\left(x\right)_{min}=f\left(m-1\right)=\left(m-1\right)^2-2\left(m-1\right)^2+3\left(m-1\right)\ge0\)

\(\Rightarrow\left(m-1\right)\left(4-m\right)\ge0\Rightarrow1\le m\le4\Rightarrow2\le m\le4\)

TH2: \(m-1< 1\Rightarrow m< 2\Rightarrow g\left(x\right)_{min}=g\left(1\right)=m\ge0\)

Vậy \(0\le m\le4\)

NV
2 tháng 1 2022

Hàm bậc 2 có \(a=1>0;-\dfrac{b}{2a}=-\dfrac{m+1}{2}\) nên đồng biến trên \(\left(-\dfrac{m+1}{2};+\infty\right)\)

Để hàm đồng biến trên khoảng đã cho thì \(-\dfrac{m+1}{2}\le-2\Rightarrow m\ge3\)

\(\Rightarrow\) Tập đã cho có vô số phần tử

Còn phần tử nguyên thì có \(2021-3=2018\) phần tử

22 tháng 11 2023

loading...  loading...  loading...  

22 tháng 11 2023

tròi oi a viết chữ xấu wá đi à, đọc bài của a mà đau mắt wá

22 tháng 12 2018

Hàm số \(y=\left(|m-2|-4\right)x^2\) có dạng: \(y=ax^2\)

với \(a=|m-2|-4\)

a,Hàm số đồng biến trong khoảng \(\left(0;+\infty\right)\Leftrightarrow a>0\)

 \(a=|m-2|-4>0\Leftrightarrow|m-2|>4\)

\(\Rightarrow m>6\)hoặc \(m< -2\)

b,Hàm số \(y=\left(|m-2|-4\right)x^2\) nghịch biến trong khoảng \(\left(0;+\infty\right)\Leftrightarrow|m-2|-4< 0\)

\(|m-2|-4< 0\Leftrightarrow|m-2|< 4\)

\(\Rightarrow-2< m< 6\)

28 tháng 4 2023

đồng biến khi m-1>0 

=>m>1

Để hàm số đồng biến thì m-1>0

=>m>1

NV
11 tháng 1 2024

Hàm nghịch biến trên khoảng đã cho khi:

\(-\dfrac{b}{2a}=\left|m-1\right|\le2\)

\(\Rightarrow-2\le m-1\le2\)

\(\Rightarrow-1\le m\le3\)

11 tháng 1 2024

Anh giúp em ạ!

https://hoc24.vn/cau-hoi/.8750829296330