Trong mặt phẳng với hệ trục tọa độ Descarter vuông góc Oxy, cho tam giác ABC vuông tại A với B(-3;0) và C(7;0) , bán kính đường tròn nội tiếp tam giác là r= 2√10 -5. Tìm tọa độ tâm I của đường tròn nội tiếp tam giác ABC, biết I có tung độ dương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi Pt đường thảng .....y=ax+b(d)
d đi qua M(-1,1) 1=-a+b⇔b=a+1
gọi d cắt Ox tại \(A\left(-\dfrac{b}{a},O\right)\)
d cắt Oy tại \(B\left(O,b\right)\)
\(\Delta AOB\) vuông cân tại o
\(\Rightarrow OA=OB\Rightarrow\left(-\dfrac{b}{a}\right)^2+o^2=o^2+b^2\)
\(\dfrac{b^2}{a^2}=b^2\Leftrightarrow\dfrac{1}{a^2}=1\Leftrightarrow a^2=1\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}b=2\\b=0\left(loại\right)\end{matrix}\right.\)
(do d cắt 2 trục tọa độ nên a,b≠0)
vậy PtT đg thảng d:y=x+2
Gọi pt đường thẳng có dạng \(y=ax+b\)
Đường thẳng qua M tạo 2 trục tọa độ 1 tam giác vuông cân khi nó có hệ số góc \(a=1\) hoặc \(a=-1\)
\(\Rightarrow\left[{}\begin{matrix}y=x+b\\y=-x+b\end{matrix}\right.\)
Thay tọa độ M vào phương trình ta được:
\(\left[{}\begin{matrix}1=-1+b\\1=-\left(-1\right)+b\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}b=2\\b=0\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}y=x+2\\y=-x\end{matrix}\right.\)
Vì C thuộc trục tung nên C(0;y)
\(\overrightarrow{AB}=\left(-4;-1\right)\)
\(\overrightarrow{AC}=\left(-1;y-2\right)\)
Theo đề, ta có: 4-(y-2)=0
=>y-2=4
hay y=6
Vì C thuộc trục tung nên C(0;y)
AB=(−4;−1)AB→=(−4;−1)
AC=(−1;y−2)AC→=(−1;y−2)
Theo đề, ta có: 4-(y-2)=0
=>y-2=4hay y=6
Ta có C ∈ O x nên C(c; 0) và C A → = − 2 − c ; 4 C B → = 8 − c ; 4 .
Tam giác ABC vuông tại C nên C A → . C B → = 0 ⇔ − 2 − c . 8 − c + 4.4 = 0
⇔ c 2 − 6 c = 0 ⇔ c = 6 → C 6 ; 0 c = 0 → C 0 ; 0 .
Chọn B.
Ta có C ∈ O x nên C(c, 0) và C A → = − 2 − c ; 4 C B → = 8 − c ; 4 .
Tam giác ABC vuông tại C nên C A → . C B → = 0 ⇔ − 2 − c . 8 − c + 4.4 = 0
⇔ c 2 − 6 c = 0 ⇔ c = 6 → C 6 ; 0 c = 0 → C 0 ; 0 .
Chọn B.