Cho 21;22;23;.....Tìm n biết :21+22+23+....+n=4840
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) * là những số chẵn.
b)*là số 0 và 5
c)*là số 0
d)* là 0,3,9
e)* là số 0
a, 21* chia hết cho 2 <=> * thuộc {0;2;4;6;8}
b, 21* chia hết cho 5 <=> * thuộc {0;5}
c, 21* chia hết cho 2 và 5 <=> * = 0
d, 21* chia hết cho 3 <=> 2+1+* chia hết cho 3 <=> * thuộc {0;3;6;9}
e, 21* chia hết cho 2; 3 và 5 mà để 21* chia hết cho 2 và 5 <=> * = 0. (con này mình không chắc lắm)
Giải:
a) \(M=21^9+21^8+21^7+...+21+1\)
Do \(21^n\) luôn có tận cùng là 1
\(\Rightarrow M=21^9+21^8+21^7+...+21+1\)
Tân cùng của M là:
\(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0
\(\Rightarrow M⋮10\)
\(\Leftrightarrow M⋮2;5\)
b) \(N=6+6^2+6^3+...+6^{2020}\)
\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\)
\(N=6.7+6^3.7+...+6^{2019}.7\)
\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\)
\(\Rightarrow N⋮7\)
Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\)
Mà \(6⋮̸9\)
\(\Rightarrow N⋮̸9\)
c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\)
\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\)
\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\)
\(\Rightarrow P⋮20\)
\(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\)
\(P=4.21+...+4^{22}.21\)
\(P=21.\left(4+...+4^{22}\right)⋮21\)
\(\Rightarrow P⋮21\)
d) \(Q=6+6^2+6^3+...+6^{99}\)
\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\)
\(Q=6.43+...+6^{97}.43\)
\(Q=43.\left(6+...+6^{97}\right)⋮43\)
\(\Rightarrow Q⋮43\)
Chúc bạn học tốt!
Sửa: \(A=1+2^1+2^2+2^3+...+2^{2021}\)
\(\Rightarrow A+1=1+1+2+2^2+...+2^{2021}\\ \Rightarrow A+1=2+2+2^2+...+2^{2021}\\ \Rightarrow A+1=2^2+2^2+2^3+...+2^{2021}\\ \Rightarrow A+1=2^3+2^3+2^4+...+2^{2021}\\ ....\\ \Rightarrow A+1=2^{2021}+2^{2021}=2^{2022}\)
Mà \(2^x=A+1\Rightarrow2^x=2^{2022}\Rightarrow x=2022\)
\(A=1+2^1+2^1+2^2+...+2^{2021}\\ \Rightarrow A=1+2+2+2^2+...+2^{2021}\\ \Rightarrow A=1+2.2+2^2+...+2^{2021}\\ \Rightarrow A=1+2^2+2^2+...+2^{2021}\\ \Rightarrow A=1+2.2^2+...+2^{2021}\\ \Rightarrow A=1+2^3+...+2^{2021}\)
....
\(\Rightarrow A=1+2^{2022}\)
\(2^x=1+A\\ \Rightarrow2^x=1+1+2^{2022}\\ \Rightarrow2^x=2+2^{2022}\)
không phù hợp với lớp 6
\(4\left(100a+10b+c\right)=400a+40b+4c\)
\(=a-2b+4c+399a+42b\)
\(=\left(a-2b+4c\right)+21\left(19a+2b\right)\)
\(a-2b+4c⋮21;21\left(19a+2b\right)⋮21\)
=>\(a-2b+4c+21\left(19a+2b\right)⋮21\)
=>\(4\left(100a+10b+c\right)⋮21\)
=>\(100a+10b+c⋮21\)
a có : abc chia hết cho 21
=> 100a+10b+c chia hết cho 21
=> 84a+16a+10b + c chia hết cho 21
=> 16a+10b+c chia hết cho 21
=> 64a+40b+4c chia hết cho 21
=> 63a+a+42b-2b+4c chia hết cho 21
=> a-2b+4c chia hết cho 21
HT