trên mặt phẳng tọa độ Oxy cho tam giác ABC có A(4;-1) và pt 2 đường trung tuyến BM:8x-y-3=0, CN:14x-13y-9=0 . tìm tọa độ đỉnh B và C
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi B',C' lần lượt là chân đường phân giác kẻ từ B,C xuống lần lượt AC,AB
GỌi i là giao của BB' và CC'
Tọa độ I là:
x-1=0 và x-y-1=0
=>x=1 và y=0
Kẻ IH vuông góc AC tại H
=>H(2;-3)
=>vecto AH=(-2;-2)=(1;1)
Phương trình AH là:
1(x-4)+1(y+1)=0
=>x+y-3=0
=>AC: x+y-3=0
Tọa độ C là:
x+y-3=0 và x-y-1=0
=>C(2;1)
A B → = 3 ; 12 , A C → = 4 ; − 1 ⇒ ( A B ) ⃗ . ( A C ) ⃗ = 3 . 4 + 12 . ( - 1 ) = 0 ⇒ ∆ A B C vuông tại A. Trực tâm của tam giác là đỉnh A. Chọn B
Do C thuộc Ox nên tọa độ có dạng: \(C\left(x;0\right)\)
Do trọng tâm G thuộc Oy \(\Rightarrow x_G=0\)
Mà \(x_A+x_B+x_C=3x_G\)
\(\Rightarrow1+\left(-3\right)+x=3.0\)
\(\Rightarrow x=2\)
\(\Rightarrow C\left(2;0\right)\)
\(\overrightarrow{AB}=\left(-3;-2\right)\)
\(\overrightarrow{AC}=\left(-1;0\right)\)
\(\overrightarrow{AB}+\overrightarrow{AC}=\left(-4;-2\right)\)
Tọa độ trọng tâm G x G ; y G là x G = 1 − 2 + 5 3 = 4 3 y G = 3 + 4 + 3 3 = 10 3 .
Chọn D.
Gọi I(x, y). Ta có A I → = x + 4 ; y − 1 B I → = x − 2 ; y − 4 C I → = x − 2 ; y + 2 .
Do I là tâm đường tròn ngoại tiếp tam giác ABC nên:
I A = I B = I C ⇔ I A 2 = I B 2 I B 2 = I C 2
⇔ x + 4 2 + y − 1 2 = x − 2 2 + y − 4 2 x − 2 2 + y − 4 2 = x − 2 2 + y + 2 2 ⇔ x + 4 2 = x − 2 2 + 9 y = 1 ⇔ x = − 1 4 y = 1 .
Chọn B.
M(x1;8x1+3); B(1/8y1+3/8;y1); N(x2;14/13x2-9/13); C(13/14y2+9/14; y2)
Theo đề, ta có: (13/14y2+4+9/14)=2x1 và y2-1=16x1+6
=>x1=13/90 và y2=-211/45
=>M(13/90; 187/45); C(-167/45; -211/45)
Theo đề, ta có:
1/8y1+3/8+4=2x2 và y1-1=2(14/13x2-9/13)
=>2x2-1/8y1=35/8 và 28/13x2-y1=-1+18/13=5/13
=>x2=5/2; y1=5
=>N(5/2;2); B(1/2;5)