Tìm điều kiện của tham số để đồ thị hàm số đi qua một điểm A ( x0; y0) cho trước. y = (2 - m )x + m,Thì đồ thị hàm số đi qua A(-1; 6)
giúp mik vs mik dg cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=\left(m^2-9\right)x+8m\left(1\right)\)
\(a,A\left(0;8\right)\in y=\left(m^2-9\right)x+8m\)
\(\Rightarrow x=0;y=8\)
Thay \(x=0;y=8\) vào \(\left(1\right)\), ta được : \(8=\left(m^2-9\right).0+8m\Rightarrow8m=8\Rightarrow m=1\)
\(b,\) Hàm số trên nghịch biến \(\Leftrightarrow a< 0\Leftrightarrow m^2-9< 0\Leftrightarrow\left(m-3\right)\left(m+3\right)< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m-3< 0\\m+3>0\end{matrix}\right.\\\left\{{}\begin{matrix}m-3>0\\m+3< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m< 3\\m>-3\end{matrix}\right.\\\left\{{}\begin{matrix}m>3\\m< -3\end{matrix}\right.\end{matrix}\right.\)
\(c,\) Hàm số trên qua \(B\left(x_B;y_B\right)\) có hoành độ = 1 \(\Rightarrow x_B=1,y_B=0\)
\(\Rightarrow0=\left(m^2-9\right).1+8.1\Rightarrow m^2-9+8=0\Rightarrow m^2=1\)
\(\Rightarrow\left[{}\begin{matrix}m=-1\\m=1\end{matrix}\right.\)
Mình xin phép sửa lại câu b của bạn Thư một chút nha:
b: Để hàm số nghịch biến thì m^2-9<0
=>(m-3)(m+3)<0
=>-3<m<3
a: Để hàm số nghịch biến thì m-2<0
hay m<2
c: Thay x=1 và y=2 vào (d), ta được:
m-2+m=2
hay m=2
ĐKXĐ: \(m\ne-\dfrac{1}{3}\)
a) Để (P) đi qua điểm \(E\left(\dfrac{1}{2};\dfrac{1}{4}\right)\) thì
Thay \(x=\dfrac{1}{2}\)và \(y=\dfrac{1}{4}\) vào hàm số \(y=\left(3m+1\right)x^2\), ta được:
\(\left(3m+1\right)\cdot\dfrac{1}{4}=\dfrac{1}{4}\)
\(\Leftrightarrow3m+1=1\)
\(\Leftrightarrow3m=0\)
hay m=0(thỏa ĐK)
b) Ta có: \(\left\{{}\begin{matrix}3x-4y=2\\-4x+3y=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}12x-16y=8\\-12x+9y=-15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-7y=-7\\3x-4y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\3x=2+4y=2+4=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy: F(2;1)
Để (P) đi qua điểm F(2;1) thì
Thay x=2 và y=1 vào hàm số \(y=\left(3m+1\right)x^2\), ta được:
\(\left(3m+1\right)\cdot4=1\)
\(\Leftrightarrow3m+1=\dfrac{1}{4}\)
\(\Leftrightarrow3m=-\dfrac{3}{4}\)
\(\Leftrightarrow m=\dfrac{-3}{4}:3=\dfrac{-3}{4}\cdot\dfrac{1}{3}=\dfrac{-1}{4}\)(thỏa ĐK)
a) Đề hàm số nghịch biến thì a - 3 < 0 \(\Leftrightarrow a< 3\).
b) Hàm số đi qua điểm M (1; -2 ) nên: \(\left(a-3\right).1-3=-2\)\(\Leftrightarrow a-3=1\)\(\Leftrightarrow a=4\).
c) Đồ thị hàm số là một đường thẳng song song với đường thẳng y = 3x nên \(a-3=3\Leftrightarrow a=6\).
b) thay x=1 , y=-2 vào phương trình f(x) , ta có : \(\left(a-3\right)\times1-3=-2\Leftrightarrow a-3=1\Leftrightarrow a=4\)
c) đồ thị hàm số song song với đường thẳng y=3x , suy ra : \(a-3=3\Leftrightarrow a=6\)
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
1: Vì (d) đi qua A(-2;5) và B(1;-4) nên ta có hệ phương trình:
-2a+b=5 và a+b=-4
=>a=-3; b=-1
2:
a: Để hàm số đồng biến thì 2m-1>0
=>m>1/2
* Điều kiện để 2 đồ thị hàm số vuông góc với nhau.a.a'=-1
* Điều kiện để 2 đồ thị hàm số cắt nhau tại 1 điểm trên trục hoành.a khác a'
và b/a khác b'/a'
* Điều kiện để 2 đồ thị hàm số cắt nhau tại một điểm trên trục tung a khác a'
và b=b'
* Điều kiện để 2 đồ thị hàm số song song với nhau a=a'
và b khác b'
* Điều kiện để 2 đồ thị hàm số cắt nhau.a khác a'
* Điều kiện để 2 đồ thị hàm số trùng nhau.a=a' và b=b'
* Điều kiện để 2 đồ thị hàm số song song và cắt nhau trên trục tung kết hợp lần lượt of 2 điều kiện
Thay x=-1 và y=6 vào (d), ta được:
m-2+m=6
hay m=4