Hai số thực x; y thỏa mãn hệ điều kiện:
\(\left\{{}\begin{matrix}x^3+2y^2-4y+3=0\\x^2+x^2y^2-2y=0\end{matrix}\right.\)
Tính giá trị biểu thức: \(P=x^{2018}+y^{2019}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : xy + x + y = -1
=> x(y + 1) + y + 1 = -1 + 1
=> (x + 1)(y + 1) = 0
=> \(\orbr{\begin{cases}x+1=0\\y+1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-1\\y=-1\end{cases}}\)(đpcm)
Vậy nếu xy + x + y = - 1 thì có ít nhất 1 số bằng - 1
xy + x + y = -1
<=> xy + x + y + 1 = 0
<=> x( y + 1 ) + 1( y + 1 ) = 0
<=> ( x + 1 )( y + 1 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\y+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\y=-1\end{cases}}\) ( đpcm )
Đáp án D
Các đáp án A, B, C đều đúng, chỉ có D là sai.
Chọn phương án D.
Muốn nhân một đa thức với một đa thức, ta nhân mỗi đơn thức của đa thức này với từng đơn thức của đa thức kia rồi cộng các tích với nhau.