Cho hệ phương trình {2x + y = 5m -1 và x - 2y=2 a) Giải HPT với m = 1 b) Tìm m để HPT có nghiệm ( x ; y) thoả mãn 2x - y = 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, với m = 2 ta có hệ phương trình :
\(\left\{{}\begin{matrix}-2x+y=3\\2x-2y=2\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}-y=5\\2x-2y=2\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}y=-5\\2x+10=2\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}y=-5\\2x=-8\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}y=-5\\x=-4\end{matrix}\right.\)
Vậy với m = 2 thì hệ phương trình trên có nghiệm là : ( x ; y ) = ( -4 ; -5 )
b, chx làm :(
a/ Bạn tự giải
b/ \(\left\{{}\begin{matrix}2x+y=5m-1\\x-2y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4x+2y=10m-2\\x-2y=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}5x=10m\\x-2y=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2m\\y=m-1\end{matrix}\right.\)
\(x^2-2y^2=1\)
\(\Leftrightarrow4m^2-2\left(m-1\right)^2=1\)
\(\Leftrightarrow4m^2-2m^2+4m-2=1\)
\(\Leftrightarrow2m^2+4m-3=0\) \(\Rightarrow m=\frac{-2\pm\sqrt{10}}{2}\)
a) Thay \(m=1\) vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}3x-y=1\\x+2y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Vậy ...
b) HPT \(\Leftrightarrow\left\{{}\begin{matrix}6x-2y=4m-2\\x+2y=3m+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m\\y=2m-1-3x\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=-m-1\end{matrix}\right.\)
Ta có: \(x^2+y^2=5\)
\(\Rightarrow m^2+m^2+2m+1=5\) \(\Leftrightarrow m^2+m-2=0\) \(\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)
Vậy ...
c) Hệ phương trình luôn có nghiệm duy nhất
Ta có: \(x-3y>0\)
\(\Rightarrow m-3\left(-m-1\right)>0\)
\(\Leftrightarrow4m+3>0\) \(\Leftrightarrow m>-\dfrac{3}{4}\)
Vậy ...
a) Thay m=1 vào hệ pt, ta được:
\(\left\{{}\begin{matrix}3x-y=1\\x+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-y=1\\3x+6y=15\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-7y=-14\\x+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=5-2y=5-2\cdot2=1\end{matrix}\right.\)
Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất là (x,y)=(1;2)
=>3x+2y=4 và 4x-2y=2m
=>7x=2m+4 và 2x-y=m
=>x=2/7m+4/7 và y=2x-m=4/7m+8/7-m=-3/7m+8/7
x<1; y<1
=>2/7m+4/7<1 và -3/7m+8/7<1
=>2/7m<3/7 và -3/7m<-1/7
=>m<3/2 và m>1/3
a)
Khi m = 1, ta có:
{ x+2y=1+3
2x-3y=1
=> { x+2y=4
2x-3y=1
=> { 2x+4y=8
2x-3y=1
=> { x+2y=4
2x-3y-2x-4y=1-8
=> { x=4-2y
-7y = -7
=> { x = 2
y = 1
Vậy khi m = 1 thì hệ phương trình có cặp nghệm
(x; y) = (2;1)
a) Thay m=1 vào HPT ta có:
\(\left\{{}\begin{matrix}x+2y=4\\2x-3y=1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x+4y=8\\2x-3y=1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x+4y=8\\7y=7\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy HPT có nghiệm (x;y)= (2;1)
Cảm ơn bạn nhiều nha