K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2023

a) Khi m = 0 thì phương trình trở thành:

\(x^2+2\left(0-2\right)x-0^2=0\)

\(\Leftrightarrow x^2+2\cdot-2x-0=0\)

\(\Leftrightarrow x^2-4x=0\)

\(\Leftrightarrow x\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

b) Ta có: 

\(\left|x_1\right|-\left|x_2\right|=6\)

\(\Leftrightarrow x^2_1+x_2^2-2\left|x_1x_2\right|=36\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-2\left|x_1x_2\right|=36\)

Mà: \(x_1+x_2=-2\left(m-2\right)=4-2m\)

\(x_1x_2=-m^2\)

\(\Leftrightarrow\left(4-2m\right)^2-2\cdot-m^2-2\cdot m^2=36\)

\(\Leftrightarrow16-16m+4m^2+2m^2-2m^2=36\)

\(\Leftrightarrow\left(4-2m\right)^2=6^2\)

\(\Leftrightarrow\left[{}\begin{matrix}4-2m=6\\4-2m=-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2m=-2\\2m=10\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=5\end{matrix}\right.\)

Δ=(2m-2)^2-4(-2m+5)

=4m^2-8m+4+8m-20=4m^2-16

Để PT có hai nghiệm phân biệt thì 4m^2-16>0

=>m>2 hoặc m<-2

x1-x2=-2

=>(x1-x2)^2=4

=>(x1+x2)^2-4x1x2=4

=>(2m-2)^2-4(-2m+5)=4

=>4m^2-8m+4+8m-20=4

=>4m^2=20

=>m^2=5

=>m=căn 5 hoặc m=-căn 5

25 tháng 8 2017

Chọn A.

Phương pháp : Sử dụng đạo hàm và đặc trưng cực trị hàm số đa thức bậc ba.

AH
Akai Haruma
Giáo viên
7 tháng 9 2017

Lời giải:

Ta có:

\(f(x)=-2x\Rightarrow f(x_1)-f(x_2)=-2x_1-(-2x_2)=2(x_2-x_1)\)

\(x_1< x_2\Rightarrow f(x_1)-f(x_2)>0\Leftrightarrow f(x_1)> f(x_2)\)

Với \(x_1< x_2\Rightarrow f(x_1)>f(x_2)\) nên hàm là hàm nghịch biến trên R

Ta có đpcm.

7 tháng 9 2017

Cho 2 tập hợp A và B. Biết tập hợp B khác rỗng, số phần tử của tập B gấp đôi số phần tử của tập A∩B và A∪B có 10 phần tử. Hỏi tập A và B có bao nhiêu phần tử? Hãy xét các trường hợp xảy ra và dùng biểu đồ Ven minh họa?

15 tháng 2 2018

Đáp án C.

Ta có  y ' = 3 x 2 + 4 m − 2 x − 5   ; y ' = 0 ⇔ 3 x 2 + 4 m − 2 x − 5 = 0   (*).

Phương trình (*) có  a c < 0    nên luôn có hai nghiệm trái dấu .

Suy ra  x 1 = − x 1 ; x 2 = x 2   .

Khi đó x 1 , x 2  là hai điểm cực trị của hàm số.

x 1 − x 2 = − 2 ⇔ − x 1 − x 2 = − 2 ⇔ x 1 + x 2 = 2 ⇔ − 4 m − 2 3 = 2 ⇔ m = 1 2

4 tháng 7 2018

Đáp án C

a: \(\text{Δ}=\left(-m\right)^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\)

để phương trình có hai nghiệm phân biệt thì m-2<>0

hay m<>2

Theo đề, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1-x_2=5\\x_1x_2=m-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x_1=m+5\\x_2=x_1-5\\x_1x_2=m-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+5}{2}\\x_2=\dfrac{m+5}{2}-5=\dfrac{m-5}{2}\\x_1x_2=m-1\end{matrix}\right.\)

\(\Leftrightarrow m^2-25=4m-4\)

\(\Leftrightarrow m^2-4m-21=0\)

=>(m-7)(m+3)=0

=>m=7 hoặc m=-3

 

 

 

3 tháng 6 2023

\(x^2-2x+m=0\)

\(\Delta=b^2-4ac=\left(-2\right)^2-4m=4-4m\)

Để pt có 2 nghiệm \(x_1,x_2\) thì \(\Delta>0\Leftrightarrow4-4m>0\Leftrightarrow-4m>-4\Leftrightarrow m< 1\)

Theo Vi-ét, ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\\x_1x_2=\dfrac{c}{a}=m\end{matrix}\right.\)

Ta có : \(2\left(x_1x_2\right)^2-x_1=6+x_2\) 

\(\Leftrightarrow2\left(x_1x_2\right)^2-x_1-x_2-6=0\)

\(\Leftrightarrow2\left(x_1x_2\right)^2-\left(x_1+x_2\right)-6=0\)

\(\Leftrightarrow2m^2-2-6=0\)

\(\Leftrightarrow2m^2=8\)

\(\Leftrightarrow m^2=4\)

\(\Leftrightarrow\left[{}\begin{matrix}m=2\left(ktm\right)\\m=-2\left(tm\right)\end{matrix}\right.\)

Vậy \(m=-2\) thì thỏa mãn đê bài.

3 tháng 6 2023

Giải thích giúp em chỗ dấu tương tương thứ hai tại sao x1-x2 lại chuyển thành (x1+x2)  được không ạ

a: khi m=1 thì pt sẽ là:

x^2-4x-5=0

=>x=5; x=-1

b: |x1|-|x2|=-2022

=>x1^2+x2^2-2|x1x2|=2022^2

=>(x1+x2)^2-2x1x2-2|x1x2|=2022^2

=>(2m+2)^2-2|-5|-2*(-5)=2022^2

=>(2m+2)^2=2022^2

=>2m+2=2022 hoặc 2m+2=-2022

=>m=1010 hoặc m=-1012