A=(x+2)2-(x+2)(x-2)(x+4)2
Rút gọn A
Tính giá trị A khi: x=-2; x=0: x=2
Chứng minh A có giá trị dương với mọi x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{x^2-2x+2x^2+4x-3x^2-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2}{x+2}\)
a, \(\dfrac{x}{x+2}\) + \(\dfrac{2x}{x-2}\) -\(\dfrac{3x^2-4}{x^2-4}\)
= \(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{x^2-4}\)
= \(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{\left(x+2\right)\left(x-2\right)}\)
= \(\dfrac{x\left(x-2\right)+2x\left(x+2\right)-3x^2-4}{\left(x+2\right)\left(x-2\right)}\)
= \(\dfrac{2x-4}{\left(x+2\right)\left(x-2\right)}=\dfrac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{2}{x+2}\)
Có vài bước mình làm tắc á nha :>
a: \(B=\dfrac{-x^2-4x-4-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x-2}{2x-1}\)
\(=\dfrac{-4x^2-8x}{\left(x+2\right)}\cdot\dfrac{1}{2x-1}=\dfrac{-4x\left(x+2\right)}{\left(x+2\right)\left(2x-1\right)}=\dfrac{-4x}{2x-1}\)
b: |x|=3
=>x=3 hoặc x=-3
Khi x=3 thì \(B=\dfrac{-4\cdot3}{2\cdot3-1}=\dfrac{-12}{5}\)
Khi x=-3 thì \(B=\dfrac{-4\cdot\left(-3\right)}{2\cdot\left(-3\right)-1}=\dfrac{12}{-7}=\dfrac{-12}{7}\)
a) Ta có: A = \(\frac{x+1}{x-2}+\frac{x-1}{x+2}+\frac{x^2+4x}{4-x^2}\)
A = \(\frac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{x^2+4x}{\left(x-2\right)\left(x+2\right)}\)
A = \(\frac{x^2+3x+2+x^2-3x+2-x^2-4x}{\left(x-2\right)\left(x+2\right)}\)
A = \(\frac{x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\)
A = \(\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}\)
b) Với x = 4 => A = \(\frac{4-2}{4+2}=\frac{2}{8}=\frac{1}{4}\)
c) ĐKXĐ: \(\hept{\begin{cases}x-2\ne0\\x+2\ne0\\4-x^2\ne0\end{cases}}\) <=> \(\hept{\begin{cases}x\ne2\\x\ne-2\\x\ne\pm2\end{cases}}\) <=> \(x\ne\pm2\)
Ta có: A = \(\frac{x-2}{x+2}=\frac{\left(x+2\right)-4}{x+2}=1-\frac{4}{x+2}\)
Để A nhận giá trị nguyên dương <=> \(1-\frac{4}{x+2}\) nguyên dương
<=> \(-\frac{4}{x+2}\) nguyên dương <=> -4 \(⋮\)x + 2
<=> x + 2 \(\in\)Ư(-4) = {1; -1; 2; -2; 4; -4}
Lập bảng:
x + 2 | 1 | -1 | 2 | -2 | 4 | -4 |
x | -1(tm) | -3(tm) | 0(tm) | -4(tm) | 2(ktm) | -6(tm) |
Vậy ....
B1:
\(a,A=\left(\frac{3-x}{x+3}.\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
\(=\left(\frac{\left(3-x\right)\left(x+3\right)^2}{\left(x+3\right)\left(x^2-9\right)}+\frac{x}{x+3}\right).\frac{x+3}{3x^2}\)
\(=\left(\frac{3-x}{x-3}+\frac{x}{x+3}\right).\frac{x+3}{3x^2}\)
\(=\left(\frac{\left(3-x\right)\left(x+3\right)}{x^2-9}+\frac{x\left(x-3\right)}{x^2-9}\right).\frac{x+3}{3x^2}\)
\(=\frac{3x+9-x^2-3x+x^2-3x}{x^2-9}.\frac{x+3}{3x^2}\)
\(=\frac{9-3x}{x^2-9}.\frac{x+3}{3x^2}\)
\(=\frac{3\left(3-x\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)3x^2}\)
\(=\frac{3-x}{x^3-3x^2}\)
B2:
\(a,B=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
\(=\left(\frac{x}{x^2-4}-\frac{2}{x-2}+\frac{1}{x+2}\right):\left(\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right)\)
\(=\left(\frac{x}{x^2-4}-\frac{2\left(x+2\right)}{x^2-4}+\frac{x+2}{x^2-4}\right):\left(\frac{x^2-4+10-x^2}{x+2}\right)\)
\(=\left(\frac{x-2x-4+x-2}{x^2-4}\right):\frac{6}{x+2}\)
\(=-\frac{6}{x^2-4}.\frac{x+2}{6}\)
\(=\frac{-6\left(x+2\right)}{\left(x+2\right)\left(x-2\right)6}=-\frac{1}{x-2}\)
a: \(A=\left(\dfrac{x}{x^2-4}+\dfrac{4}{x-2}+\dfrac{1}{x+2}\right):\dfrac{3x+3}{x^2+2x}\)
\(=\dfrac{x+4x+8+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x+2\right)}{3\left(x+1\right)}\)
\(=\dfrac{6\left(x+1\right)\cdot x\left(x+2\right)}{3\left(x+1\right)\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{2x}{x-2}\)
\(A=\frac{2x^2+4x}{x^3-4x}+\frac{x^2-4}{x^2+2x}+\frac{2}{2-x}\left(x\ne0;x\ne\pm2\right)\)
\(A=\frac{2x^2+4x}{x\left(x^2-4\right)}+\frac{\left(x-2\right)\left(x+2\right)}{x\left(x+2\right)}-\frac{2}{x-2}\)
\(A=\frac{2x^2+4x}{x\left(x-2\right)\left(x+2\right)}+\frac{\left(x-2\right)^2\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}-\frac{2x\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{2x^2+4x}{x\left(x-2\right)\left(x+2\right)}+\frac{x^3-2x^2-4x+8}{x\left(x-2\right)\left(x+2\right)}-\frac{2x^2+4x}{x\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{2x^2+4x+x^3-2x^2-4x+8-2x^2-4x}{x\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{-2x^2-4x+8}{x\left(x-2\right)\left(x+2\right)}=\frac{-2x\left(x+2\right)+8}{x\left(x-2\right)\left(x+2\right)}=\frac{-2x+8}{x\left(x-2\right)}\)
Vậy \(A=\frac{-2x+8}{x\left(x-2\right)}\left(x\ne0;x\ne\pm2\right)\)
b) \(A=\frac{-2x+8}{x\left(x-2\right)}\left(x\ne0;x\ne\pm2\right)\)
Ta có: x=4 (tmđk) thay vào A ta có:
\(A=\frac{-2\cdot4+8}{4\left(4-2\right)}=\frac{-8+8}{4\cdot2}=\frac{0}{8}=0\)
Vậy A=0 với x=4
\(A=\left(x+2\right)^2-\left(x+2\right)\left(x-2\right)+\left(x-4\right)^2\\ =x^2+4x+4-\left(x^2-4\right)+x^2-8x+16=x^2-4x+24\\ \cdot x=-2=>A=\left(-2\right)^2-4.\left(-2\right)+24=36\\ \cdot x=0=>A=0^2-4.0+24=24\\ \cdot x=2=>A=2^2-4.2+24=20\\ A=\left(x-2\right)^2+20>0\left(DPCM\right)\)