Cho bốn số x1, x2, x3, x4 khác 0 thỏa mãn x22 = x1.x3 ; x23 = x2.x4
Chứng minh rằng: x1/ x4 = (x1 + x2 + x3 / x2 + x3 + x4 ) ^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x1;x2;x3;x4;x5=-1 hoặc 1
=>x1.x2;x2.x3;x3.x4;x4.x5;x5.x1 bằng 1 hoặc -1
giả sử x1.x2+x2.x3+x3.x4+x4.x5+x5.x1=0
=>số các số hạng 1 và -1 bằng nhau
=>số các số hạng chia hết cho 2
=>5 chia hết cho 2(có 5 số hạng) Vô lí
=>x1.x2+x2.x3+x3.x4+x4.x5+x5.x1\(\ne0\)
=>đpcm
Đặt x2−2x+m=tx2−2x+m=t, phương trình trở thành t2−2t+m=xt2−2t+m=x
Ta có hệ {x2−2x+m=tt2−2t+m=x{x2−2x+m=tt2−2t+m=x
⇒(x−t)(x+t−1)=0⇒(x−t)(x+t−1)=0
⇔[x=tx=1−t⇔[x=tx=1−t
⇔[x=x2−2x+mx=1−x2+2x−m⇔[x=x2−2x+mx=1−x2+2x−m
⇔[m=−x2+3xm=−x2+x+1⇔[m=−x2+3xm=−x2+x+1
Phương trình hoành độ giao điểm của y=−x2+x+1y=−x2+x+1 và y=−x2+3xy=−x2+3x:
−x2+x+1=−x2+3x−x2+x+1=−x2+3x
⇔x=12⇒y=54⇔x=12⇒y=54
Đồ thị hàm số y=−x2+3xy=−x2+3x và y=−x2+x+1y=−x2+x+1:
Bỏ x4 đi nhé bn
Theo t/c dãy tỉ số=nhau:
\(\frac{x_1-1}{3}=\frac{x_2-2}{2}=\frac{x_3-3}{1}=\frac{x_1-1+x_2-2+x_3-3}{3+2+1}\)\(=\frac{\left(x_1+x_2+x_3\right)-\left(1+2+3\right)}{6}=\frac{30-6}{6}=\frac{24}{6}=4\)
=>x1-1=4.3=12=>x1=13
x2-2=4.2=8=>x2=10
x3-3=4=>x3=7