Cho x - y = 4; x.y = 3. Giá trị của biểu thức (x + y)2 là:
toán tuổi thơ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chứng minh \(x^4+y^4\ge x^3y+xy^3\)
\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left[\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}\right]\ge0\)(luôn đúng)
Áp dụng vào bài toán ta có:
\(x^4+y^4\ge x^3y+xy^3\)\(\Rightarrow2\left(x^4+y^4\right)\ge x^4+y^4+x^3y+xy^3\)\(=\left(x^3+y^3\right)\left(x+y\right)\)
\(\Rightarrow\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\).Tương tự ta cũng có:
\(\frac{y^4+z^4}{y^3+z^3}\ge\frac{y+z}{2};\frac{z^4+x^4}{z^3+x^3}\ge\frac{z+x}{2}\)
Cộng theo vế ta có: \(VT\ge\frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=x+y+z=1\)
Dấu = khi \(x=y=z=\frac{2008}{3}\)
\(x-y=4\Rightarrow\left(x-y\right)^2=16\Rightarrow x^2-2xy+y^2=16\Rightarrow x^2+y^2-2.3=16\Rightarrow x^2+y^2=22\)
\(\left(x+y\right)^2=x^2+y^2+2xy=22+2.3=28\)