K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2018

Ta có:

\(x+y+z=a\)

\(\Rightarrow\left(x+y+z\right)^2=a^2\)

Ta lại có:

\(x^2+y^2+z^2=b^2\)

\(\Rightarrow\left(x+y+z\right)^2-\left(x^2+y^2+z^2\right)=a^2-b^2\)

\(\Rightarrow x^2+y^2+z^2+2\left(xy+xz+yz\right)-x^2-y^2-z^2=a^2-b^2\)

\(\Rightarrow2\left(xy+xz+yz\right)=a^2-b^2\)

\(\Rightarrow xy+xz+yz=\dfrac{a^2-b^2}{2}\left(1\right)\)

Lại có:

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=c\)

\(\Rightarrow\dfrac{yz}{xyz}+\dfrac{xz}{xyz}+\dfrac{xy}{xyz}=c\)

\(\Rightarrow\dfrac{yz+xz+xy}{xyz}=c\)

\(\Rightarrow yz+xz+xy=c.xyz\left(2\right)\)

Từ (1) và (2) suy ra:

\(\dfrac{a^2-b^2}{2}=c.xyz\)

\(\Rightarrow\dfrac{a^2-b^2}{2c}=xyz\)

Như vậy ta có:

\(\left\{{}\begin{matrix}x+y+z=a\\xy+yz+zx=\dfrac{a^2-b^2}{2}\\xyz=\dfrac{a^2-b^2}{2c}\end{matrix}\right.\)

Ta có:

\(x^3+y^3+z^3\)

\(=\left(x+y+z\right)^3-3\left(x^2z+xyz+xz^2+x^2y+xyz+xy^2+y^2z+xyz+yz^2\right)+3xyz\)

\(=\left(x+y+z\right)^3-3\left[xz\left(x+y+z\right)+xy\left(x+y+z\right)+yz\left(x+y+z\right)\right]+3xyz\)

\(=\left(x+y+z\right)^3-3\left[\left(xy+yz+zx\right)\left(x+y+z\right)\right]+3xyz\)

\(=a^3-3\left[\dfrac{\left(a^2-b^2\right)}{c}.a\right]+3\left(\dfrac{a^2-b^2}{2c}\right)\)

\(=a^3-\dfrac{3a\left(a^2-b^2\right)}{c}+\dfrac{3\left(a^2-b^2\right)}{2c}\)

\(=a^3-\dfrac{6a\left(a^2-b^2\right)}{2c}+\dfrac{3\left(a^2-b^2\right)}{2c}\)

\(=a^3-\dfrac{6a\left(a^2-b^2\right)+3\left(a^2-b^2\right)}{2c}\)

\(=a^3-\dfrac{3\left(a^2-b^2\right)\left(2a+1\right)}{2c}\)

24 tháng 8 2018

cảm ơn hiha

10 tháng 5 2015

Ta có : \(\frac{x}{x+y+z+t}<\frac{x}{x+y+z}<\frac{x}{x+y}\)

           \(\frac{y}{x+y+z+t}<\frac{y}{x+y+z}<\frac{y}{x+y}\)

           \(\frac{z}{x+y+z+t}<\frac{z}{x+y+z}<\frac{z}{x+y}\)

           \(\frac{t}{x+y+z+t}<\frac{t}{x+y+z}<\frac{t}{x+y}\)

=> \(\frac{x+y+z+t}{x+y+z+t}\)<A<\(\left(\frac{x}{x+y}+\frac{y}{x+y}\right)+\left(\frac{z}{z+t}+\frac{t}{z+t}\right)\)=> 1< A<2=> A ko phải là số tự nhiên

đúng cái nha

6 tháng 11 2017

Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

mong các bn đừng làm như vậy nah

20 tháng 2 2018

Cộng 3 vế pt ta được:

\(x+y-z+x-y+z-x-y+z=0\Leftrightarrow x+y+z=0\)

25 tháng 4 2023

Áp dụng BĐT Svácxơ, ta có:

\(A=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}=\dfrac{2}{2}=1\)

\(MinA=1\Leftrightarrow x=y=z=\dfrac{2}{3}\)

 

26 tháng 11 2016

Bài 1: áp dụng tính chất dãy tỉ số bằng nhau ta được:

(a+b-c)/c=(b+c-a)/a=(c+a-b)/b=(a+b-c+b+c-a+c+a-b)/(a+b+c)=(a+b+c)/(a+b+c0=1

Do đó: (a+b+c)/c=1 suy ra a+b+c=c suy ra a+b=c-c=0 nên a=b (1)

(b+c-a)/a=1 suy ra b+c-a=a suy ra a+c-a=a (b=a) suy ra c=a (2) Từ (1) và(2) ta có: a=b=c

Suy ra:P= (1+b/a).(1+c/b).(1+a/c)=(1+a/a).(1+a/a).(1+a/a)=(1+1).(1+1).(1+1)=2.2.2=8

Bài 2: bạn cũng áp dụng tính chất dãy tỉ bằng nhau rồi xét giống bài 1 là ra

13 tháng 7 2015

\(x+y+z=0\Rightarrow x+y=-z;\text{ }y+z=-x;\text{ }z+x=-y\)

\(A=x.\left(-z\right).\left(-y\right)=xyz\)

\(B=y.\left(-z\right).\left(-x\right)=xyz\)

\(C=z.\left(-y\right).\left(-x\right)=xyz\)

\(\Rightarrow A=B=C\)

27 tháng 1 2018

Xét : 2017.2017 = (x+y+z).(1/x+y + 1/x+z + 1/y+z)

= x/y+z + y/x+z + z/x+y + 1 + 1 + 1

= x/y+z + y/x+z + z/x+y + 3

=> A = x/y+z + y/x+z + z/x+y = 2017^2 - 3 = 4068286

Tk mk nha

27 tháng 1 2018

Ta có :(x+y+z)(1/x+y  +  1/y+z  +  1/x+z) =20172

=>x/x+y  +y/x+y  +z/x+y  +  x/y+z +  y/y+z +  z/y+z  +x/x+z  +  y/x+z  +  z/x+z=20172

=>(x/x+y  +  y/x+y)+(y/y+z  +  z/y+z)+(x/x+z  +  z/x+z)+(x/y+z  +  y/x+z  +  z/x+y)    =4068289

=>1+1+1+A=4068289

=>A=4068286