Cho biết a/b = b/c = c/a; với a, b, c là các số thực khác 0. Tính giá trị của biểu thức M = a2019 + b2019 + c2019 / a672 * b673 * c674
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay \(b=a-1\) vào hệ thức thứ hai thì được \(a-1+c=a+4\) hay \(c=5\). Hơn nữa, ta thấy \(a>b\) nên \(b\) không thể là độ dài của cạnh huyền của tam giác vuông được. Sẽ có 2 trường hợp:
TH1: \(a\) là độ dài cạnh huyền. Khi đó theo định lí Pythagoras thì \(b^2+c^2=a^2\) \(\Rightarrow b^2+25=\left(b+1\right)^2\) \(\Leftrightarrow b^2+25=b^2+2b+1\) \(\Leftrightarrow2b=24\) \(\Leftrightarrow b=12\), suy ra \(a=13\). Vậy \(\left(a,b,c\right)=\left(13,12,5\right)\)
TH2: \(c\) là độ dài cạnh huyền. Khi đó cũng theo định lý Pythagoras thì \(a^2+b^2=c^2\) \(\Leftrightarrow\left(b+1\right)^2+b^2=25\) \(\Leftrightarrow2b^2+2b-24=0\) \(\Leftrightarrow b^2+b-12=0\) \(\Leftrightarrow\left[{}\begin{matrix}b=3\left(nhận\right)\\b=-4\left(loại\right)\end{matrix}\right.\) \(\Rightarrow a=b+1=4\). Vậy \(\left(a,b,c\right)=\left(4,3,5\right)\)
Như vậy, ta tìm được \(\left(a,b,c\right)\in\left\{\left(13,12,5\right);\left(4,3,5\right)\right\}\)
b) Bạn không nói rõ b', c' là gì thì mình không tính được đâu. Mình tính b, c trước nhé.
Do \(b:c=3:4\) nên rõ ràng \(c>b\). Vì vậy \(b\) không thể là độ dài cạnh huyền được. Sẽ có 2TH
TH1: \(c\) là độ dài cạnh huyền. Khi đó theo định lý Pythagoras thì \(a^2+b^2=c^2\). Do \(b:c=3:4\) nên \(b=\dfrac{3}{4}c\). Đồng thời \(a=125\) \(\Rightarrow125^2+\left(\dfrac{3}{4}c\right)^2=c^2\) \(\Rightarrow\dfrac{7}{16}c^2=125^2\) \(\Leftrightarrow c=\dfrac{500}{\sqrt{7}}\) \(\Rightarrow b=\dfrac{375}{\sqrt{7}}\). Vậy \(\left(b,c\right)=\left(\dfrac{375}{\sqrt{7}},\dfrac{500}{\sqrt{7}}\right)\)
TH2: \(a\) là độ dài cạnh huyền. Khi đó cũng theo định lý Pythagoras, ta có \(b^2+c^2=a^2=125^2\). Lại có \(b:c=3:4\Rightarrow\dfrac{b}{3}=\dfrac{c}{4}\Rightarrow\dfrac{b^2}{9}=\dfrac{c^2}{16}=\dfrac{b^2+c^2}{25}=\dfrac{125^2}{25}=625\)
\(\Rightarrow b^2=5625\Rightarrow b=75\) \(\Rightarrow c=100\). Vậy \(\left(b,c\right)=\left(75,100\right)\).
Như vậy, ta tìm được \(\left(b,c\right)\in\left\{\left(75,100\right);\left(\dfrac{350}{\sqrt{7}};\dfrac{500}{\sqrt{7}}\right)\right\}\)
\(A=a.\left(b+c\right)-b.\left(a-c\right)=ab+ac-ab+bc=ac+bc\\ B=\left(a+b\right)c=ac+bc\\ \Rightarrow A=B\left(=ac+bc\right)\)
Câu hỏi của Đoàn Thị Như Thảo - Toán lớp 7 - Học toán với OnlineMath
BÀI 1:
A) A=(a-b+c)-(-a-b-c)
A=a-b+c--a+b+c
A=a--a+b-b+c+c
A=0+0+2c
A=2c
B) A=(a-b+c)-(-a-b-c)
thay số: A=(1--1+5)-(-1--1-5)
A=7--5
A=12
BÀI 2:
a) ta có a+b-c=18
thay số : a+10-(-9)=18
a+19=18
a=18-19
a=-1
b) ta có 12-a+b+5c=-1
thay số: 12-a+(-7)+5.5=-1
12-a+(-7)+25=1
12-a+18=-1
12+18-a=-1
30-a=-1
a=30--1
a=31
c) ta có 1+2b-3a=-9
thay số : 1+2.(-3)-3a=-9
bn NGUYỄN THỊ BÌNH ơi phần C mk đâu thấy có c trong biểu đâu,bn xem lại xem có sai đề bài phần C ko, bảo mk?
1+3.(-2-a)=-9
3.(-2-a)=-9-1=-10
-2-a=-10:3=-10\3
a=-2--10\3
a=4\3
Cho A=(a-b+c)-(-a-b-c)
a, Rút gọn A
Bài giải :
A = ( a - b + c ) - ( -a -b -c )
A = a - b + c + a + b + c
A = ( a + a ) + ( -b + b ) + ( c + c )
A = 2a + 0 + 2c
A = 2a + 2c
Vậy biểu thức A khi rút gọn được 2a + 2c
1. ta có
\(\hept{\begin{cases}a+b=15\times2=30\\b+c=7\times2=14\\a+c=11\times2=22\end{cases}\Rightarrow2\left(a+b+c\right)=30+14+22=66}\)
vậy \(a+b+c=33\Rightarrow\hept{\begin{cases}c=33-30=3\\a=33-14=19\\b=33-22=11\end{cases}}\)
câu hai tương tự bạn nhé
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
Do đó: \(\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{cases}}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Rightarrow a=b=c\)
Thay a = b = c vào M
\(\Rightarrow M=\frac{a^{2019}+b^{2019}+c^{2019}}{a^{672}.b^{673}.c^{674}}=\frac{a^{2019}+a^{2019}+a^{2019}}{a^{672}.a^{673}.a^{674}}=\frac{3.a^{2019}}{a^{2019}}=3\)