1. Cho hai số a và b thỏa mãn:
a - b = 2( a + b ) = a phần b
Chứng minh a = -3b; Tính a phần; tìm a và b
2. Tìm x, y, z biết: ( x - y2 + z)2 + ( y - 2 )2 + ( z + 3)2 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để chứng minh rằng √(a-b) và √(3a+3b+1) là các số chính phương, ta sẽ điều chỉnh phương trình ban đầu để tìm mối liên hệ giữa các biểu thức này. Phương trình ban đầu: 2^(2+a) = 3^(2+b) Ta có thể viết lại phương trình theo dạng: (2^2)^((1/2)+a/2) = (3^2)^((1/2)+b/2) Simplifying the exponents, we get: 4^(1/2)*4^(a/2) = 9^(1/2)*9^(b/2) Taking square roots of both sides, we have: √4*√(4^a) = √9*√(9^b) Simplifying further, we obtain: 22*(√(4^a)) = 32*(√(9^b)) Since (√x)^y is equal to x^(y/), we can rewrite the equation as follows: 22*(4^a)/ = 32*(9^b)/ Now let's examine the expressions inside the square roots: √(a-b) can be written as (√((22*(4^a))/ - (32*(9^b))/)) Similarly, √(3*a + 3*b + ) can be written as (√((22*(4^a))/ + (32*(9^b))/)) We can see that both expressions are in the form of a difference and sum of two squares. Therefore, it follows that both √(a-b) and √(3*a + 3*b + ) are perfect squares.
Làm như chắc là sai:vvv
Điều kiện: b\(\ne0\)
Theo đề bài ta có: a-b=2(a+b)
<=>a-b=2a+2b
<=>a-2a=2b+b
<=> -a=3b
<=>a=-3b
=> ab=(-3b).b=-3b2
Ta có: \(\dfrac{a}{b}=\left(a-b\right)\Leftrightarrow a=\left(a-b\right)b=ab-b^2=-3b^2-b^2=-4b^2\)
<=> -3b=-4b2
<=> \(-3b+4b^2=0\Leftrightarrow b\left(4b-3\right)=0\)
=> \(\Leftrightarrow\left[{}\begin{matrix}b=0\left(loai\right)\\4b-3=0\end{matrix}\right.\)
=> \(b=\dfrac{3}{4}\Rightarrow a=-3.\dfrac{3}{4}=-\dfrac{9}{4}\)
Vậy...
Có 2a^2 + a = 3b^2 + b
<=> 2a^2 + a - 3b^2 - b = 0
<=> 3a^2 + a - 3b^2 - b = a^2
Xét (a-b).(3a+3b+1) = 3a^2-3ab+3ab-3b^2+a-b = 3a^2-3b^2+a-b = a^2 là 1 số chính phương (1)
Gọi ƯCLN của a-b;3a+3b+1 là d ( d thuộc N sao )
=> a-b chia hết cho d
3a+3b+1 chia hết cho d
a^2 chia hết cho d^2
=> a-b chia hết cho d , 3a+3b +1 chia hết cho d , a chia hết cho d
=> a chia hết cho d , b chia hết cho d , 3a+3b+1 chia hết cho d
=> 1 chia hết cho d => d = 1 ( vì d thuộc N sao )
=> a-b và 3a+3b+1 nguyên tố cùng nhau (2)
Từ (1) và (2) => a-b và 3a+3b+1 đều là số chính phương
CM: a = -3b
Theo đề bài, ta có: a-b = 2(a+b)
=> a-b = 2a + 2b
=> a - 2a = 2b + b
=> a(1 - 2) = b(2 + 1)
=> a.(-1) = b.3
=> -a = 3b
=> a = -3b
Ta có: a-b = 2(a+b)
=> a-b = 2a + 2b
=> a - 2a = 2b + b
=> a(1 - 2) = b(2 + 1)
=> a.(-1) = b.3
=> -a = 3b
=> a = -3b
=> a/b= -3
=>a-b=-3 (1)
=>2(a+b)=-3
=>a+b=-3/2 (2)
Từ (1) và (2)=> (a+b) - (a-b) =-3/2+(-3)
=>2a=-9/2
=>a=-9/4
=>b=-3-(-9/4)
=>b=-21/4
Vậy…