Cho phương trình \(x^2\)+px+q=0
a. Giai pt khi p = -(3+\(\sqrt{2}\)) ; q = 3\(\sqrt{2}\)
b. Lập phương trình bậc hai có 2 nghiệm là : \(\frac{x_1}{x_2}\) ; \(\frac{x_2}{x_1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay m=1 vào phương trình, ta được:
\(x^4-4x^2-5=0\)
\(\Leftrightarrow x^4+x^2-5x^2-5=0\)
\(\Leftrightarrow x^2\left(x^2+1\right)-5\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2-5\right)=0\)
mà \(x^2+1>0\forall x\)
nên \(x^2-5=0\)
\(\Leftrightarrow x^2=5\)
hay \(x\in\left\{\sqrt{5};-\sqrt{5}\right\}\)
Vậy: Khi m=1 thì tập nghiệm của phương trình là: \(S=\left\{\sqrt{5};-\sqrt{5}\right\}\)
HD :
Thay nghiệm x = (√5 - √3)/(√5 + √3) = 4 - √15 vào pt khai triển và thu gọn ta có:
31p + 4q + 1 = (8p + q).√15 (*)
Vì p, q hữu tỉ nên VT của (*) hữu tỉ còn VP vô tỉ.
Do đó muốn (*) nghiệm đúng thì ta phải có đồng thời:
{ 31p + 4q + 1 = 0
{ 8p + q = 0
Dễ dàng giải hệ này có p = 1; q = - 8
=> p + q = - 7
a) Thay \(a=0\) vào phương trình, ta được:
\(x^2-2x-3=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Vậy ...
b) Ta có: \(\Delta'=4-3a\)
Để phương trình có 2 nghiệm x1 và x2 \(\Leftrightarrow\Delta'\ge0\) \(\Leftrightarrow a\le\dfrac{4}{3}\)
Vậy ...
c) Phương trình có nghiệm bằng -1
\(\Rightarrow1+2\left(1-a\right)+a^2+a-3=0\)
\(\Leftrightarrow a^2-a=0\) \(\Rightarrow\left[{}\begin{matrix}a=1\\a=0\end{matrix}\right.\)
Vậy ...
pt: \(x^2+2\left(a-1\right)x+a^2+a-3=0\) (1)
a) khi a=0 pt(1) \(\Leftrightarrow x^2-2x-3=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)
b) \(\Delta'=b'^2-ac=\left(a-1\right)^2-\left(a^2+a-3\right)=-3a+4\)
phương trình có 2 nghiệm phân biệt khi \(\Delta'>0\Leftrightarrow-3a+4>0\Leftrightarrow a< \dfrac{4}{3}\)
c) pt(1) có nghiệm x=-1 \(\Leftrightarrow\left(-1\right)^2+2\left(a-1\right).\left(-1\right)+a^2+a-3=0\)
\(\Leftrightarrow a^2-a=0\Leftrightarrow\left[{}\begin{matrix}a=0\\a=1\end{matrix}\right.\)
Lời giải:
a) Đặt \(x^3=a\) thì pt trở thành:
\(a^2+2003a-2005=0\)
\(\Leftrightarrow (a+\frac{2003}{2})^2=2005+\frac{2003^2}{2^2}=\frac{4020029}{4}\)
\(\Rightarrow \left[\begin{matrix} a+\frac{2003}{2}=\sqrt{\frac{4020029}{4}}\\ a+\frac{2003}{2}=-\sqrt{\frac{4020029}{4}}\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} a=\sqrt{\frac{4020029}{4}}-\frac{2003}{2}\approx 1\\ a=-\sqrt{\frac{4020029}{4}}-\frac{2003}{2}\approx -2004\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=\sqrt[3]{a}\approx 1\\ x=\sqrt[3]{a}\approx \sqrt[3]{-2004}\end{matrix}\right.\)
b)
Đặt \(x^2=a(a\geq 0)\)
PT trở thành: \(\sqrt{2}a^2-2(\sqrt{2}+\sqrt{3})a+\sqrt{12}=0\)
\(\Delta'=(\sqrt{2}+\sqrt{3})^2-\sqrt{2}.\sqrt{12}=5\)
Theo công thức nghiệm của pt bậc 2 thì pt có 2 nghiệm:
\(\left\{\begin{matrix} a_1=\frac{(\sqrt{2}+\sqrt{3})+\sqrt{5}}{\sqrt{2}}\\ a_2=\frac{(\sqrt{2}+\sqrt{3})-\sqrt{5}}{\sqrt{2}}\end{matrix}\right.\)
Do đó \(x=\pm \sqrt{a}\in\left\{\pm \sqrt{\frac{\sqrt{2}+\sqrt{3}+\sqrt{5}}{\sqrt{2}}};\pm \sqrt{\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{\sqrt{2}}}\right\}\)
Câu 2:
Đặt \(x^2=a\). PT ban đầu trở thành:
\(a^2+a+m=0(*)\)
\(\bullet \)Để pt ban đầu có 3 nghiệm pb thì $(*)$ phải có một nghiệm $a=0$ và một nghiệm $a>0$
Để $a=0$ là nghiệm của $(*)$ thì \(0^2+0+m=0\Leftrightarrow m=0\)
Khi đó: \((*)\Leftrightarrow a^2+a=0\). Ta thấy nghiệm còn lại là $a=-1< 0$ (vô lý)
Do đó không tồn tại $m$ để pt ban đầu có 3 nghiệm pb.
\(\bullet\) Để pt ban đầu có 4 nghiệm pb thì $(*)$ phải có 2 nghiệm dương phân biệt
Mà theo định lý Viete, nếu $(*)$ có 2 nghiệm pb $a_1,a_2$ thì:\(a_1+a_2=-1< 0\) nên 2 nghiệm không thể đồng thời cùng dương.
Vậy không tồn tại $m$ để pt ban đầu có 4 nghiệm phân biệt.
Delta .........
Viet........
\(t_1=\frac{x_1}{x_2};\text{ }t_2=\frac{x_2}{x_1}\)
\(t_1+t_2=\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{x_1^2+x_2^2}{x_1x_2}=\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=\frac{\left(-p\right)^2-2q}{q}\)
\(t_1.t_2=1\)
Do đó t1; t2 là 2 nghiệm của pt \(t^2-\frac{p^2-2q}{q}t+1=0\)
a: Để phương trình có hai nghiệm trái dấu thì (m-1)(m+4)(m+3)<0
=>m<-4 hoặc -3<m<1
b:Để phương trình có ít nhất 1 nghiệm thì
(m-1)(m+4)(m+3)<0 hoặc \(\left\{{}\begin{matrix}m< >-3\\\left(m-1\right)^2-4\left(m+3\right)\left(m-1\right)\left(m+4\right)< 0\\\dfrac{-m+1}{m+3}< 0;\dfrac{\left(m-1\right)\left(m+4\right)}{\left(m+3\right)}>0\end{matrix}\right.\)
=>(m<-4 hoặc -3<m<1) hoặc \(\left\{{}\begin{matrix}m< >-3\\\left(m-1\right)\left(m-1-4m^2-28m-48\right)< 0\\\left\{{}\begin{matrix}\left[{}\begin{matrix}m>1\\m< -3\end{matrix}\right.\\\left[{}\begin{matrix}m>1\\-4< m< -3\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)
=>(m<-4 hoặc -3<m<1) hoặc (m>1 hoặc m<-3)
\(x^2-2mx+3m-2=0\)
Thay m = -1 vào PT ta được:
\(x^2-2\left(-1\right)x+3\left(-1\right)-2=0\)
\(\Rightarrow x^2+2x-5=0\)
\(\Delta'=b'^2-ac=1^2-1.\left(-5\right)=6>0\)
Do \(\Delta'>0\Rightarrow\)PT có hai nghiệm phân biệt:
\(x_1=\frac{-b'+\sqrt{\Delta'}}{a}=-1+\sqrt{6}\)
\(x_2=\frac{-b'-\sqrt{\Delta'}}{a}=-1-\sqrt{6}\)