K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2016

bai toan nay qua qua kho

31 tháng 8 2017

1/
pt<=>tan(3x+2)=tan\(\dfrac{\Pi}{3}\)
<=>x=\(\dfrac{\Pi}{9}\)-\(\dfrac{2}{3}\)+\(\dfrac{k\Pi}{3}\)(k thuộc Z) (*)

mà x\(\in\)(\(-\dfrac{\Pi}{2}\);\(\dfrac{\Pi}{2}\))

<=>\(-\dfrac{\Pi}{2}\)<\(\dfrac{\Pi}{9}\)-\(\dfrac{2}{3}\)+\(\dfrac{k\Pi}{3}\)<\(\dfrac{\Pi}{2}\)(bạn giải bất pt với nghiệm là ''k'' nha)

<=>-1,1296....<k<1,803....

Mà k thuộc Z =>k={-1;01}

Thay các giá trị của k vào (*) ta được:

\(\left[{}\begin{matrix}x=-\dfrac{2\Pi}{9}-\dfrac{2}{3}\\x=\dfrac{\Pi}{9}-\dfrac{2}{3}\\x=\dfrac{4\Pi}{9}-\dfrac{2}{3}\end{matrix}\right.\)

Vậy.............

2/ Là tương tự cho quen nha!

15 tháng 9 2019

sao ra đc -1,1296... vậy

NV
22 tháng 10 2020

1.

\(\Leftrightarrow2cos2x+\sqrt{2}.\frac{\sqrt{2}}{2}=0\)

\(\Leftrightarrow cos2x=-\frac{1}{2}\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k\pi\\x=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)

\(\Rightarrow x=\left\{\frac{\pi}{3};\frac{4\pi}{3};\frac{2\pi}{3};\frac{5\pi}{3}\right\}\)

2.

\(\Leftrightarrow sin4x-cos4x+sin4x+cos4x=\sqrt{6}\)

\(\Leftrightarrow2sin4x=\sqrt{6}\)

\(\Leftrightarrow sin4x=\frac{\sqrt{6}}{2}>1\)

Pt vô nghiệm

31 tháng 7 2019

@Lê Như Quỳnh

31 tháng 7 2019

@Lê Ngọc Như Quỳnh help me!

NV
7 tháng 9 2020

\(\Leftrightarrow4cos^3x-3cosx-\left(2cos^2x-1\right)+m.cosx-1=0\)

\(\Leftrightarrow4cos^3x-2cos^2x+\left(m-3\right)cosx=0\)

\(\Leftrightarrow cosx\left(4cos^2x-2cosx+m-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\left(1\right)\\4cos^2x-2cosx+m-3=0\left(2\right)\end{matrix}\right.\)

Xét (1) \(\Rightarrow x=\frac{\pi}{2}+k\pi\) không có nghiệm nào trên khoảng đã cho

\(\Rightarrow\) (2) phải có 7 nghiệm trên khoảng đã cho

Mà (2) là pt bậc 2 nên có tối đa 2 nghiệm cosx, ứng với mỗi giá trị cosx cũng có tối đa 2 nghiệm x thuộc khoảng đã cho

\(\Rightarrow\) (2) có tối đa 4 nghiệm

Không tồn tại m thỏa mãn yêu cầu

5 tháng 9 2020

xin lỗi : "để pt có nghiệm" nha bạn !

NV
5 tháng 9 2020

\(\Leftrightarrow2cos^2x-1-\left(2m-1\right)cosx-2m=0\)

\(\Leftrightarrow2cos^2x+cosx-1-2m\left(cosx+1\right)=0\)

\(\Leftrightarrow\left(cosx+1\right)\left(2cos-1\right)-2m\left(cosx+1\right)=0\)

\(\Leftrightarrow\left(cosx+1\right)\left(2cosx-2m-1\right)=0\)

\(\Leftrightarrow cosx=\frac{2m+1}{2}\)

Do \(x\in\left(-\frac{\pi}{2};\frac{\pi}{2}\right)\Rightarrow0< cosx\le1\)

\(\Rightarrow0< \frac{2m+1}{2}\le1\Rightarrow-\frac{1}{2}< m\le\frac{1}{2}\)

14 tháng 9 2020

Cho mk hỏi sao lại là 2017 ạ ko phải 2018 sao ạ?

NV
10 tháng 9 2020

72.

\(\Leftrightarrow sinx=m+1\)

Do \(-1\le sinx\le1\) nên pt có nghiệm khi và chỉ khi:

\(-1\le m+1\le1\)

\(\Leftrightarrow-2\le m\le0\)

73.

\(\Leftrightarrow cosx=m\)

Do \(-1\le cosx\le1\) nên pt vô nghiệm khi và chỉ khi: \(\left[{}\begin{matrix}m< -1\\m>1\end{matrix}\right.\)