Bài 7 (2) :Cho hình thang ABCD (AB//CD) ; hai đường chéo cắt nhau tại O. Qua O kẻ đường thẳng song song với AB cắt AD lần lượt tại M và N . Chứng minh OM = ON
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ A kẻ AG // BC cắt CD tại G
Ta có: Hình thang ABCD (giả thiết)
⇒ AB // CD
⇒ AB // GC (vì G ∈ CD)
Xét tứ giác ABCG, có:
AB // GC (chứng minh trên)
AG // BC (giả thiết)
⇒ Tứ giác ABCG là hình bình hành
⇒ AB = GC = 40 cm
AG = BC = 50 cm
Ta có: DG = CD - GC (vì G ∈ CD)
⇒ DG = 80 - 40
⇒ DG = 40(cm)
Xét Δ AGD, có:
AG2=AD2+DG2
=> 502= 30^2 +40^2
=> 50^2 = 2500
=> 50^2 = 50^2
⇒ ΔAGD vuông tại D
⇒ Hình thang ABCD là hình thang vuông
Từ A kẻ AG // BC cắt CD tại G
Ta có: Hình thang ABCD (giả thiết)
⇒ AB // CD
⇒ AB // GC (vì G ∈ CD)
Xét tứ giác ABCG, có:
AB // GC (chứng minh trên)
AG // BC (giả thiết)
⇒ Tứ giác ABCG là hình bình hành
⇒ AB = GC = 40 cm
AG = BC = 50 cm
Ta có: DG = CD - GC (vì G ∈ CD)
⇒ DG = 80 - 40
⇒ DG = 40(cm)
Xét Δ AGD, có:
AG2=AD2+DG2AG2=AD2+DG2
⇒502=302+402⇒502=302+402
⇒502=900+1600
⇒502=2500
⇒502=502
⇒ ΔAGD vuông tại D
⇒ Hình thang ABCD là hình thang vuông
hơi dài nha
Kẻ đường cao AH và đường cao BK . ⇒AB=HK=1cm
Nên ta có : DH+CK=4 (1)
Theo tỉ số lượng giác cho tam giác ADH và BCK ta lại có :
\(\left\{{}\begin{matrix}AH=tan60\cdot DH\\BK=tan30\cdot CK\end{matrix}\right.\)\(\Rightarrow tan60\cdot DH=tan30\cdot CK\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình :
\(\left\{{}\begin{matrix}DK+CK=4\\\sqrt{3}DH-\dfrac{\sqrt{3}}{3}CK=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}DH=1\\CK=3\end{matrix}\right.\)
\(\Rightarrow AH=tan60\cdot DH=\sqrt{3}\cdot1=\sqrt{3}\left(cm\right)\)
\(\Rightarrow S_{ABCD}=12\cdot AH\cdot\left(AB+CD\right)=12\cdot\sqrt{3}\cdot\left(1+5\right)=3\sqrt{3}\left(cm^2\right)\)
Tick hộ nha bạn 😘
BÀI 2; Cho hình cân ABCD ( AB // CD ) ; góc A = 120 độ. Tính các góc còn lại của hình thang.
Giải:
Xét hình thang cân ABCD ta có:
góc BAD + góc ADC = 180 độ ( 2 góc trong cùng phía bù nhau do AB//CD)
=> 120 độ + góc ADC = 180 độ
=> góc ADC = 60 dộ
Vì tiws giác ABCD là hình thang cân
=> góc BAD = góc ABC = 120 độ
=> góc ADC = góc BCD = 60 độ
Do AB // CD ( GT )
⇒^A+^C=180o
⇒2^C+^C=180o
⇒3^C=180o
⇒^C=60o
⇒ ^A = 60o * 2 = 120o
Do ABCD là hình thang cân
⇒ ^C = ^D
Mà ^C = 60o
⇒ ^D = 60o
AB // CD ⇒ ^D + ^B = 180o
⇒ˆB=180o − 60o = 120o
Vậy ^A = ^B = 120o ; ^C= ^D = 60o
Xét 2 tam giác : Tam giác ADB và tam giác BCA có :
AB : Cạnh chung
^DAB=^CBA (Tính chất của hình thang cân)
AC = BD ( Tính chất của hình thang cân)
⇒ ΔADB = ΔBCA ( c−g−c)
⇒ ^CAB = ^DBA (2 góc tương ứng)
⇒ ^OAB = ^OBA
=> Tam giác OAB cân
=> OA = OB
=> Điều phải chứng minh
Bài 6:
Xét ΔBAC có BA=BC
nên ΔBAC cân tại B
Suy ra: \(\widehat{BAC}=\widehat{BCA}\)
mà \(\widehat{BAC}=\widehat{ACD}\)
nên \(\widehat{ACB}=\widehat{ACD}\)
hay CA là tia phân giác của \(\widehat{BCD}\)
Bài 3:
Xét ΔACD và ΔBDC có
AC=BD
CD chung
AD=BC
Do đó: ΔACD=ΔBDC
Suy ra: \(\widehat{ACD}=\widehat{BDC}\)
hay \(\widehat{OCD}=\widehat{ODC}\)
Xét ΔODC có \(\widehat{OCD}=\widehat{ODC}\)
nên ΔODC cân tại O
Suy ra: OD=OC
Ta có: AO+OC=AC
OB+OD=BD
mà AC=BD
và OC=OD
nên OA=OB
Bài 2:
Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{A}\) chung
Do đó: ΔAHB=ΔAKC
Suy ra: AH=AK và HB=KC
Xét ΔABC có
\(\dfrac{AK}{AB}=\dfrac{AH}{HC}\)
Do đó: KH//BC
Xét tứ gác BKHC có KH//BC
nên BKHC là hình thang
mà KC=BH
nên BKHC là hình thang cân
Bài 2:
Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{A}\) chung
Do đó: ΔAHB=ΔAKC
Suy ra: AH=AK
Xét ΔABC có
\(\dfrac{AK}{AB}=\dfrac{AH}{AC}\)
Do đó: HK//BC
Xét tứ giác BCHK có HK//BC
nên BCHK là hình thang
mà HB=KC(ΔAHB=ΔAKC)
nên BCHK là hình thang cân
Bài 3:
Xét ΔACD và ΔBDC có
AC=BD
CD chung
AD=BC
Do đó: ΔACD=ΔBDC
Suy ra: \(\widehat{ACD}=\widehat{BDC}\)
hay \(\widehat{OCD}=\widehat{ODC}\)
Xét ΔODC có \(\widehat{OCD}=\widehat{ODC}\)
nên ΔODC cân tại O
Suy ra: OD=OC
Ta có: AO+OC=AC
OB+OD=BD
mà AC=BD
và OC=OD
nên OA=OB