Cho a+b+d+3 khác 0; b+3 khác 0; d+a khác 0 và a+b/b+3=3+d/d+a. Khi đó a=...
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo t/c dãy tỉ số=nhau:
\(\frac{a+b}{b+3}=\frac{3+d}{d+a}=\frac{a+b+3+d}{b+3+d+a}=1\)
=>a+b=b+3
=>a=3(cùng bớt đi b)
Vậy a=3 thỏa mãn
b^2=ac= >a/b=b/c ; c^3=bd= >b/c=c/d
=> a/b=b/c=c/d= >a^3/b^3=b^3/c^3=c^3/d^3=(a^3+b^3+c^3)/(b^3+c^3+d^3)
mà a^3/b^3=a/b.a/b.a/b=a/b.b/c.c/d=a/b
nên (a^3+b^3+c^3)/(b^3+c^3+d^3)=a/b
mọi người ơi , giúp em với , em sắp đi học rồi , mọi người giúp em với
Câu 1
Ta có : \(\frac{a}{b}=\frac{c}{d}=>\left(\frac{a}{b}+1\right)=\left(\frac{c}{d}+1\right)\left(=\right)\frac{a+b}{b}=\frac{c+d}{d}\)
=> ĐPCM
Câu 2
Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{b}{a}=\frac{d}{c}=>\left(\frac{b}{a}+1\right)=\left(\frac{d}{c}+1\right)\left(=\right)\frac{b+a}{a}=\frac{d+c}{c}=>\frac{a}{b+a}=\frac{c}{d+c}\)
=> ĐPCM
Câu 3
Câu 3
Ta có \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(=) (a+b).(c-d)=(a-b).(c+d)(=)ac-ad+bc-bd=ac+ad-bc-bd(=)-ad+bc=ad-bc(=) bc+bc=ad+ad(=)2bc=2ad(=)bc=ad=> \(\frac{a}{b}=\frac{c}{d}\)
=> ĐPCM
Câu 4
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(=>\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\left(1\right)\)
Lại có \(\frac{a^2+c^2}{b^2+d^2}=\frac{b^2k^2+c^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)
Từ (1) và (2) => ĐPCM
Theo t/c dãy tỉ số=nhau:
\(\frac{a+b}{b+3}=\frac{3+d}{d+a}=\frac{a+b+3+d}{b+3+d+a}=1\)
=>a+b=b+3
=>a=3(cùng bớt đi b)
Vậy a=3
theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a+b}{b+3}=\frac{3+d}{d+a}=\frac{a+b+3+d}{b+3+d+a}\)(hai vế trên đều giống nhau)
=>\(\frac{a+b+3+d}{b+3+d+a}=1\)
<=>a+b=b+3
=>a=3 (vì b=b cùng bớt b)