Cho hình bình hành ABCD, IK lần lượt ở trung điểm của AB, CD
a)Chứng minh AI= CK
b) Chứng minh AICK là hình bình hành
c) BD cắt AK ở CI lần lượt là MN; chứng minhDM=NM=NB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định nghĩa, tính chất và theo giả thiết của hình bình hành, ta có:
Tứ giác AICK có cặp cạnh đối song song và bằng nhau nên AICK là hình bình hành.
Bài làm
a) Vì ABCD là hình bình hành
=> AB = DC (1)
Mà I là trung điểm AB => AI = IB = 1/2AB (2)
Và K là trung điểm AC => DK = KC = 1/2DC (3)
Từ (1), (2) và (3) => AI = IB = DK = KC
Vì AB // DC (vì ABCD là hình bình hành)
=> AI // KC
Xét tứ giác AICK có:
AI // KC (cmt)
AI = KC (cmt)
=> AICK là hình bình hành.
b) Xét tam giác DCF có:
KE // FC (Do AK // IC vì AICK là hình bình hành)
K là tủng điểm DC
=> KE là đường trung bình.
=> E là trung đểm DF
=> DE = EF (4)
Xét tam giác BAE có:
IF // AE (Vì AK // IF do AICK là hình bình hành)
I là trung điểm AB
=> IF là đường trung bình.
=> F là trung điểm EB
=> EF = FB (5)
Từ (4) và (5) => DE = EF = FB.
c) Vì AB // DC
=> \(\widehat{ABD}=\widehat{BDC}\)(so le trong)
Xét tam giác BIF và tam giác DKE có:
IB = DK (cmt)
\(\widehat{ABD}=\widehat{BDC}\)(cmt)
DE = FB (cmt)
=> Tam giác BIF = tam giác DKE (c.g.c)
=> IF = EK (hai cạnh tương ứng)
Xét tứ giác IFKC có:
IF = EK (cmt)
IF // EK (Do IC // AK)
=> IFKC là hình bình hành.
Còn câu d và e thì xin kiếu. Vì hình rối + câu cuối mình không biết làm ^^"
Theo câu a, AICK là hình bình hành
⇒ AK//CI. Khi đó , ta có:
Mặt khác, ta lại có: AI = IB, CK = KD theo giải thiết:
ÁP dụng định lý đường trung bình vào tam giác ABM, DCN ta có:
⇒ DM = MN = NB
a: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
b: Xét ΔAEM có
E là trung điểm của AB
EN//AM
Do đó; N là trung điểm của BM
=>BN=NM(1)
Xét ΔDNC có
F là trung điểm của DC
FM//NC
Do đó: M là trung điểm của DN
=>DM=MN(2)
Từ (1) và (2) suy ra DM=MN=NB
c: Xét ΔADM và ΔCBN có
AD=CB
\(\widehat{ADM}=\widehat{CBN}\)
DM=BN
Do đó: ΔADM=ΔCBN
Suy ra: AM=CN
mà EN=AM/2
và MF=CN/2
nên EN=MF
Xét tứ giác MENF có
NE//MF
NE=MF
Do đó: MENF là hình bình hành
a, ABCD là hình bình hành ⇒AB=CD , AB//CD
Ta có: AK= \(\frac{1}{2}AB\)
CI= \(\frac{1}{2}CD\)
AB= CD ( cm trên )
⇒AK=CI
Tứ giác AICK có AK=CI ( cm trên )
AK//CI (cmtrên)
⇒AICK là hình bình hành ⇒AI // CK
c , ΔABM có KN //AM ( cm trên )
AK=KB (gt)
⇒BN=MN (1)
Chứng minh tương tự với ΔDNC ta có: DM=MN (2)
Từ (1) và (2) ⇒DM=MN=BN
a: Xét tứ giác DMBN có
BM//DN
BM=DN
Do đó: DMBN là hình bình hành
b: Xét ΔAKB có
M là trung điểm của AB
MH//BK
Do đó: H là trung điểm của AK
Xét ΔCHD có
N là trung điểm của CD
NK//DH
Do đó: K là trung điểm của HC
a) Do ABCD là hình bình hành (gt)
⇒ AB // CD
⇒ BE // DF
Do ABCD là hình bình hành
⇒ AB = CD (1)
Ta có:
E là trung điểm của AB (gt)
⇒ BE = AB : 2 (2)
F là trung điểm của CD (gt)
⇒ DF = CD : 2 (3)
Từ (1), (2) và (3) ⇒ BE = DF
Tứ giác BFDE có:
BE // DF (cmt)
BE = DF (cmt)
⇒ BFDE là hình bình hành
b) Gọi G là trung điểm của AC
Do ABCD là hình bình hành (gt)
⇒ G là trung điểm của AC và BD (4)
Do BFDE là hình bình hành (cmt)
G là trung điểm của BD (cmt)
⇒ G là trung điểm của EF (5)
Từ (4) và (5) ⇒ AC, BD, EF cắt nhau tại G