Cho hình thang cân ABCD (AB // CD) và AB < CD, DA cắt CB tại I
a) Chứng minh IAB là tam giác cân
b) Chứng minh tam giác IBD = tam giác IAC
c) AC cắt BD tại K; chứng minh tam giác KAD = tam giác KBC
d) Chứng minh IK là trục đối xứng của hình thang ABCD
a: Ta có: \(\widehat{IAB}=\widehat{IDC}\)
\(\widehat{IBA}=\widehat{ICD}\)
mà \(\widehat{IDC}=\widehat{ICD}\)
nên \(\widehat{IAB}=\widehat{IBA}\)
hay ΔIAB cân tại I
b: Xét ΔIBD và ΔIAC có
IB=IA
\(\widehat{BID}\) chung
ID=IC
Do đó: ΔIBD=ΔIAC