Cho b2 = a.c; chứng minh rrằng a2+b2/b2+c2= a/c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a^2+ac}{ac+c^2}=\dfrac{a\left(a+c\right)}{c\left(a+c\right)}=\dfrac{a}{c}\left(đpcm\right)\)
Ta có: \(A\cdot C+B^2-2x^4y^4=x^3y\cdot xy^3+\left(x^2y^2\right)^2-2x^4y^4\)
\(\Leftrightarrow A\cdot C+B^2-2x^4y^4=x^4y^4+x^4y^4-2xy^4\)
\(\Leftrightarrow A\cdot C+B^2-2x^4y^4=0\)(đpcm)
A.C + B^2 - 2x^4.y^4
=(x^3.y)(x.y^3) + x^4.y^4 - 2x^4.y^4
=(x^4.y^4 + x^4.y^4) - 2x^4.y^4
=2x^4.y^4 - 2x^4.y^4
=0
\(a.b-a.c+b.c-c.c\)
\(=a\left(b-c\right)+c\left(b-c\right)\)
\(=\left(b-c\right)\left(a+c\right)\)
k mk nha
thank you very much
mk đồng ý
với kq của công chúa xinh xắn
chúc bn học giỏi
ahjhjchipham shi nit chi
bài làm của mk giống công chúa xinh xắn nha!@@@
\(\frac{a+b}{a-b}=\frac{a+c}{c-a}\)
=> ( a + b ) ( c -a ) = ( a + c ) ( a - b )
=> a ( c - a ) + b ( c - a ) = a ( a - b ) + c ( a - b )
=> ac - aa + bc - ba = aa - ab + ca - bc
=> - aa - aa = - bc - bc
=> - 2 a 2 = - 2 bc
=> a 2 = bc
Vậy \(\frac{a+b}{a-b}=\frac{a+c}{c-a}\)thì a 2 = bc
ap dung bdt x^2+y^2>=2xy ta co:
a^2/b^2+c^2/a^2 >=2 c/b
b^2/c^2+c^2/a^2 >=2 b/a
a^2/b^2 +b^2/c^2>=2 a/c
cong thoe tung ve :
2 VT>= 2VP
=>VT>=VP(dpcm)
dau "=" xay ra khi a=b=c
Bạn viết dấu được không