K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2017

Giải:
Đặt \(\frac{a}{b}=\frac{b}{c}=k\Rightarrow a=bk,c=dk\)

a) Ta có: \(\left(\frac{a-b}{c-d}\right)^2=\left(\frac{bk-b}{dk-d}\right)^2=\left[\frac{b\left(k-1\right)}{d\left(k-1\right)}\right]^2=\left(\frac{b}{d}\right)^2\) (1)

\(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2}{d^2}=\left(\frac{b}{d}\right)^2\) (2)

Từ (1) và (2) \(\Rightarrow\left(\frac{a-b}{c-d}\right)^2=\frac{ab}{cd}\left(đpcm\right)\)

b) Ta có: \(\left(\frac{a+b}{c+d}\right)^3=\left(\frac{bk+b}{dk+d}\right)^3=\left[\frac{b\left(k+1\right)}{d\left(k+1\right)}\right]^3=\left(\frac{b}{d}\right)^3\) (1)

\(\frac{a^3-b^3}{c^3-d^3}=\frac{\left(bk\right)^3-b^3}{\left(dk\right)^3-d^3}=\frac{b^3.k^3-b^3}{d^3.k^3-d^3}=\frac{b^3\left(k^3-1\right)}{d^3\left(k^3-1\right)}=\frac{b^3}{d^3}=\left(\frac{b}{d}\right)^3\) (2)

Từ (1) và (2) \(\Rightarrow\left(\frac{a+b}{c+d}\right)^3=\frac{a^3-b^3}{c^3-d^3}\left(đpcm\right)\)

1 tháng 2 2017

thks kiu nhiều

Bài 1 : 

Từ \(\frac{1}{4}< \frac{1}{3}\) suy ra \(\frac{1}{4}< \frac{1+1}{4+3}< \frac{1}{3}\) hay \(\frac{1}{4}< \frac{2}{7}< \frac{1}{3}\)

Từ  \(\frac{1}{4}< \frac{2}{7}\)suy ra \(\frac{1}{4}< \frac{1+2}{4+7}< \frac{1}{3}\)hay  \(\frac{1}{4}< \frac{3}{11}< \frac{1}{3}\)

Từ \(\frac{2}{7}< \frac{1}{3}\)suy ra \(\frac{2}{7}< \frac{2+1}{7+3}< \frac{1}{3}\)hay \(\frac{2}{7}< \frac{3}{10}< \frac{1}{3}\)

Vậy ta có : \(\frac{1}{4}< \frac{3}{11}< \frac{2}{7}< \frac{3}{10}< \frac{1}{3}\)

Chúc bạn học tốt ( -_- )

Bài 2 : 

\(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a}{a+c}\left(1\right)\)

\(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{b}{b+d}\left(2\right)\)

\(\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{c}{c+a}\left(3\right)\)

\(\frac{d}{a+b+c+d}< \frac{d}{d+a+b}< \frac{d}{d+b}\left(4\right)\)

Cộng ( 1 ), ( 2 ) , (3 ) và ( 4 ) theo từng vế ta được :

\(1=\frac{a+b+c+d}{a+b+c+d}< \frac{a}{a+b+c}+\frac{b}{b+c+d}\)\(+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{a+c}{a+c}+\frac{b+d}{b+d}\)

Chúc bạn học tốt ( -_- )

8 tháng 7 2016

Bài 1: Ta có:  \(\frac{x}{4}=\frac{y}{7}\Rightarrow7x=4y\) (1)

=> 7xy=4yy

=> 7.112=4.y2

=> y2=784:4

=> y2=196.

Mà vì 196= 14.14  => y=14  (2)

TỪ (1) và (2)  => 14.4=x.7

=> x=56:7=8

Vậy x=8;y=14

10 tháng 7 2017

a ) \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{c-\left(a+b+c\right)}{ac+bc+c^2}\)

\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2\right)+ab\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+c^2+ac\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left[b\left(a+c\right)+c\left(a+c\right)\right]\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

=> a = - b hoặc b = - c hoặc a = - c

Xét a = - b ta có :

\(\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}=\left(\frac{1}{-b^{2017}}+\frac{1}{b^{2017}}\right)+\frac{1}{c^{2017}}=\frac{1}{c^{2017}}\) (1)

\(\frac{1}{a^{2017}+b^{2017}+c^{2017}}=\frac{1}{\left(-b^{2017}+b^{2017}\right)+c^{2017}}=\frac{1}{c^{2017}}\) (2)

Từ (1) ; (2) => \(\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}=\frac{1}{a^{2017}+b^{2017}+c^{2017}}\)

Tới đây bạn xét tiếp 2 TH b = - c và c = - a nữa ta có đpcm nha

b ) TQ :

Nếu a +b +c khác 0; a;b;c khác 0 ; \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\) thì \(\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\)

7 tháng 10 2015

\(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k;y=5k\Rightarrow x.y=2k.5k=10\Rightarrow10k^2=10\Rightarrow k^2=1\Rightarrow k\in\left\{1;-1\right\}\)

k=1 thì \(\frac{x}{2}=\frac{y}{5}=1\Rightarrow x=2;y=5\)

k=-1 thì \(\frac{x}{2}=\frac{y}{5}=-1\Rightarrow x=-2;y=-5\)

Thay \(3,7=3\frac{7}{10}\)vào biểu thức:

A = \(\left[3+\frac{7}{10}\right]+\left[3+\frac{9}{10}\right]+\left[3+\frac{11}{10}\right]+\left[3+\frac{13}{10}\right]+\left[3+\frac{15}{10}\right]\)

A = 3 + 3 + 4 +4 + 4 = 18

B = \(\left[5x\right]=\left[5.3,7\right]=\left[18,5\right]=18\)

Vậy A = B

1) c)

\(\left[\frac{1000}{3}\right]+\left[\frac{1000}{3^2}\right]+\left[\frac{1000}{3^3}\right]+\left[\frac{1000}{3^4}\right]=33+11+3+1=48\)