Chứng minh rằng nếu 2 số a, b là hai số nguyên \(\ne\)0 mà a là \(B_{\left(b\right)}\); b là \(B_{\left(a\right)}\) thì a = b hoặc a = -b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow a^2b-a^2c+b^2c-b^2a+c^2a-c^2b=0\)
\(\Leftrightarrow\left(a^2b-b^2a\right)-\left(a^2c-b^2c\right)+\left(c^2a-c^2b\right)\)
\(\Leftrightarrow ab\left(a-b\right)-c\left(a^2-b^2\right)+c^2\left(a-b\right)\)
\(\Leftrightarrow ab\left(a-b\right)-c\left(a+b\right)\left(a-b\right)+c^2\left(a-b\right)\)
\(\Leftrightarrow\left(a-b\right)\left[ab-c\left(a+b\right)+c^2\right]=0\)
\(\Leftrightarrow\left(a-b\right)\left(ab-ac-bc+c^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left[a\left(b-c\right)-c\left(b-c\right)\right]=0\)
\(\Leftrightarrow\left(a-b\right)\left(a-c\right)\left(b-c\right)=0\)
\(\Leftrightarrow.....\)
dễ mà cô nương
\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(\left(a^2+ab+b^2\right)=\left\{\left(a+b\right)^2-ab\right\}\)
\(a^3-b^3=\left(a-b\right)\left(25-6\right)=19\left(a-b\right)\)
ta có
\(a=-5-b\)
suy ra
\(a^3-b^3=19\left(-5-2b\right)\) " xong "
2, trên mạng đầy
3, dytt mọe mày ngu ab=6 thì cmm nó phải chia hết cho 6 chứ :)
4 . \(x^2-\frac{2.1}{2}x+\frac{1}{4}+\frac{1}{3}-\frac{1}{4}>0\) tự làm dcmm
5. trên mạng đầy
6 , trên mang jđầy
Vì a là bội của b => a=b.k ( \(k\in N\)*)
b là bội của a \(\Rightarrow b=ah=b.k.h\) (\(h\in N\)*)
TH1: k=0, h=0
-> b=a=-b
Th2: k khác 0, h khác 0 thì chỉ có thể là k=1;h=1 hoặc k=-1; h=-1
Đường thẳng AB có một vectơ chỉ phương là \(\overrightarrow {{u_{AB}}} = \overrightarrow {AB} = \left( { - a;b} \right)\). Do đó \(\overrightarrow {{n_{AB}}} = \left( {b;a} \right)\)
Phương trình tổng quát của đường thẳng AB có vectơ pháp tuyến \(\overrightarrow {{n_{AB}}} = \left( {b;a} \right)\) và đi qua điểm \(A\left( {a;0} \right)\)là: \(b\left( {x - a} \right) + a\left( {y - 0} \right) \Leftrightarrow bx + ay - ab = 0 \Leftrightarrow \frac{x}{a} + \frac{y}{b} = 1\).
Giả sử: \(a\ge b\)thì
a là bội của b nên a =b.k (k\(\in\)Z, k \(\ne\)0)
b là bội của a nên b = a.q (q\(\in\)Z, q \(\ne\)0, \(q\ge k\))
Thay b = a.q thì:
a = b.k = a.q.k
\(\Rightarrow q.k=1\)
\(\Rightarrow k\inƯ\left(1\right)\left(k,q\in Z;k,q\ne0\right)\)
Mà \(q\ge k\)
\(\Rightarrow k=1,q=-1;k=q=1\)
Nếu q = 1; k= -1 thì b.k = b.(-1) = -b
Nếu q = 1; k= 1 thì b.k = b.1 = b,đpcm
Vì a là bội của b nên ta có: a=m.b (m thuộc Z) (1)
vì b là bội của a nên ta có: b=n.a (n thuộc Z) (2)
Kết hợp (1), (2) ta được:
a/m=n,a
\(\Leftrightarrow\)1/m=n mà n thuộc Z do đó suy ra m=1 hoặc m= -1
Vậy: +) Khi m=1 ta được a=b
+) Khi m= -1 ta được a= -b
ta co vi a la boi b =) a=kb(1)
vi b la boi cua a =) b=za(2)
thay(2) vao (1) ta dc
a=kb =) a=kza =) kz=1 (3)
Tu (1),(2) va (3) =) a=b nhe ^^
Có : \(a;b\in Z\)và \(a;b\ne0\)
Mà : \(a\)là \(B_{\left(b\right)}\)thì \(a=b\cdot m\left(m\in Z\right)\)
\(b\)là \(B_{\left(a\right)}\)thì \(b=a\cdot n\left(n\in Z\right)\)
\(\Rightarrow a=b\cdot m=\left(a\cdot n\right)\cdot m=a\cdot\left(m\cdot n\right)\)
\(\Rightarrow m\cdot n=1\)
\(\Rightarrow m=n=1\)hoặc \(m=n=-1\)
+) Nếu \(m=n=1\)thì \(a=b\cdot m=b\cdot1=b\)( Vậy \(a=b\))
+) Nếu \(m=n=-1\)thì \(a=b\cdot m=b\cdot\left(-1\right)=-b\)( Vậy \(a=-b\))
a là bội của b \(\Rightarrow\) a = bk (k \(\in Z\)) (1)
b là bội của a \(\Rightarrow\) b = ah (h \(\in Z\)) (2)
Thay (2) vào (1) ta có:
a = ahk
\(\Rightarrow\) hk = 1
\(\Rightarrow\) \(\orbr{\begin{cases}h=1;k=1\\h=-1;k=-1\end{cases}}\)
\(\Rightarrow\) \(\orbr{\begin{cases}a=-b\\a=b\end{cases}}\)