Cho a = 60 ; b = 72
Chứng minh ƯCLN(a, b) . BCNN(a, b) = a . b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này bảo tính phần nguyên đúng ko -,- [A]
\(A=\sqrt[3]{60+\sqrt[3]{60+\sqrt[3]{60}+...+\sqrt[3]{60}}}\)
\(A>\sqrt[3]{27}=3\) \(\left(1\right)\)
\(A< \sqrt[3]{60+\sqrt[3]{60+\sqrt[3]{60+...+\sqrt[3]{64}}}}=4\) \(\left(2\right)\)
Từ (1) và (2) suy ra \(3< A< 4\) nên phần nguyên của A là 3
Chúc bạn học tốt ~
Thay số cuối bằng 64, rút gọn ra 4 nên A<4
Hiển nhiên A> căn bậc 3 của 27=3
Do đó 3<A<4 nên phần nguyên của A là 3
A > \(\sqrt[3]{27}\)=3
A < \(\sqrt[3]{60+\sqrt[3]{60+\sqrt[3]{60+...+\sqrt[3]{60+4}}}}\) = 4
Chọn D: Nhân 45 với 60 rồi lấy kết quả nhận được chia cho 100
Lời giải:
Dễ thấy: \(A>\sqrt[3]{60}>\sqrt[3]{27}=3\)
Để cm \(A< 4\) ta sử dụng quy nạp:
Ta thấy \(A_1=\sqrt[3]{60}< \sqrt[3]{64}=4\)
\(A_2=\sqrt[3]{60+\sqrt[3]{60}}< \sqrt[3]{60+\sqrt[3]{64}}=4\)
.....
Giả sử nhận định đúng đến \(n=k\), tức là:
\(A_k=\underbrace{\sqrt[3]{60+\sqrt[3]{60+....+\sqrt[3]{60}}}}_{\text{k số 60}}<4\)
Ta thấy \(A_{k+1}=\underbrace{\sqrt[3]{60+\sqrt[3]{60+\sqrt[3]{60+...+\sqrt[3]{60}}}}}_{\text{k+1 số 60}}=\sqrt[3]{60+A_k}\)
\(<\sqrt[3]{60+4}\Leftrightarrow A_{k+1}< 4\), tức là nhận định đúng với cả $n=k+1$
Do đó \(A< 4\)
Vậy $3< A< 4$. Theo định nghĩa phần nguyên suy ra \([A]=3\)
D.Nhân 45 với 60 rồi lấy kết quả nhận được chia cho 100
mk nha b
C nhân 45 với 100 rồi lấy kết quả nhận được chia cho 60
ta có :
60= 2^2 x 3 x5
72=2^3 x3^2
UCLN(a,b)=2^2 x3 = 12
BCNN(a,b) = 2^3 x 3^2 x5 =360
UCLN(a,b)xBCNN(a,b)=4320
axb=4320
vay : axb=ƯCLN(a,b) x BCNN(a,b)