Đặt a = 2 x ; b = 3 x . Đẳng thức nào dưới đây đúng với ∀ x ∈ R
A. 108 x = a b 6
B. 108 x = 2 a b 3
C. 108 x = a 2 b 3
D. 108 x = 3 a 2 b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{x+2}{x^2-x+3}\Leftrightarrow Ax^2-Ax+3A=x+2\\ \Leftrightarrow Ax^2-x\left(A+1\right)+3A-2=0\\ \Leftrightarrow\Delta=\left(A+1\right)^2-4A\left(3A-2\right)\ge0\\ \Leftrightarrow-11A+10A+1\ge0\\ \Leftrightarrow-\dfrac{1}{11}\le A\le1\)
Mà \(A\in Z\Leftrightarrow A\in\left\{0;1\right\}\)
\(+)A=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\\ +)A=1\Leftrightarrow x+2=x^2-x+3\Leftrightarrow x=1\)
Vậy \(x\in\left\{-2;1\right\}\Leftrightarrow A\in Z\)
a.
\(y=\sqrt{x+2}\Rightarrow y^2=\left(\sqrt{x+2}\right)^2\)
\(\Rightarrow y^2=x+2\)
\(\Rightarrow x=y^2-2\)
thay vào A ta có:\(A=x-2\sqrt{x+2}\)
\(\Rightarrow A=y^2-2y=y^2-2y-2\)
b.
\(A=x-2\sqrt{x+2}\)
Điều kiện:x+2≥0⇔x>-2
ta có:\(A=x-2\sqrt{x+2}\)
\(=\left(x+2\right)-2\sqrt{x+2}.1+1-3\)
\(=\left(\sqrt{x+12}-1\right)^2-3\)
vì \(\left(\sqrt{x+2}-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(\sqrt{x+2}-1\right)^2-3\ge-3\forall x\)
vậy GTNN của A là-3
a/ y=\(\sqrt{x+2}\)→\(y^2-2=x\)
⇒A=\(y^2-2-2y\)
b/ A=\(y^2-2y-2\)=\(\left(y^2-2y+1\right)-3\)=\(\left(y-1\right)^2-3\)≥ -3
⇒\(A_{min}=-3\)
dấu = xảy ra khi y=1⇒x= -1
b: =x(x^2+6x+9)
=x(x+3)^2
c: =(x^2-xy)+(x-y)
=x(x-y)+(x-y)
=(x-y)(x+1)
d: =(x^2+x)-(xy+y)
=x(x+1)-y(x+1)
=(x+1)(x-y)
b) \(x^3+6x^2+9x\)
\(=x\cdot\left(x^2+6x+9\right)\)
\(=x\cdot\left(x^2+2\cdot3\cdot x+3^2\right)\)
\(=x\cdot\left(x+3\right)^2\)
c) \(x^2-xy+x-y\)
\(=\left(x^2-xy\right)+\left(x-y\right)\)
\(=x\left(x-y\right)+\left(x-y\right)\)
\(=\left(x-y\right)\left(x+1\right)\)
d) \(x^2+x-xy-y\)
\(=\left(x^2+x\right)-\left(xy+y\right)\)
\(=x\left(x+1\right)-y\left(x+1\right)\)
\(=\left(x-y\right)\left(x+1\right)\)
\(a,x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
\(b,2x+2y-x^2-xy\)
\(=\left(2x-x^2\right)+\left(2y-xy\right)\)
\(=x\left(2-x\right)+y\left(2-x\right)\)
\(=\left(x+y\right)\left(2-x\right)\)
\(C=\dfrac{x-1}{x^2}:\dfrac{x-1}{2x+1}\)
\(C=\dfrac{x-1}{x^2}.\dfrac{2x+1}{x-1}\)
\(C=\dfrac{2x+1}{x^2}\)
Đề là \(\left(2x^2-x\right)^2+...\) hay là \(\left(2x^2-x\right)+...\) vậy bn?
a) 341231 x 2 = 682 462
214325 x 4 = 857 300
b) 102426 x 5 = 512 130
410536 x 3 = 1 231
Đáp án C