cho các tổng sau: a = 1/ 2 x 3 + 2 / 3 x 4 + ... + 8/ 9 x 10; b = 1 / 2 + 1 / 3 + ... + 1/10. tìm a-b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên cây có 32 con chim đang đậu ở hai cành cây. Có 4 con từ cành dưới bay lên cành trên và có 6 con bay từ cành trên xuống cành dưới, lúc đó số chim ở cành trên bằng số chim ở cành dưới. Hỏi lúc đầu cành dưới có bao nhiêu con chim?
Ta có:
a) ( 45 – 5 x 9 ) x 1 x 2 x 3 x 4 x 5 x 6 x 7
= (45 – 45) x 1 x 2 x 3 x 4 x 5 x 6 x 7
= 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7
= 0
b) (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10) x (72 – 8 x 8 – 8)
= (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10) x (72 – 64 – 8)
= (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10) x 0
= 0
c) (36 – 4 x 9) : (3 x 5 x 7 x 9 x 11)
= (36 – 36) : (3 x 5 x 7 x 9 x 11)
= 0 : (3 x 5 x 7 x 9 x 11)
= 0
d) (27 – 3 x 9) : 9 x 1 x 3 x 5 x 7
= (27 – 27) : 9 x 1 x 3 x 5 x 7
= 0 : 9 x 1 x 3 x 5 x 7
=0
a) ( 45 – 5 x 9 ) x 1 x 2 x 3 x 4 x 5 x 6 x 7
= 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7
b) (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10) x (72 – 8 x 8 – 8)
= (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10) x 0
c) (36 – 4 x 9) : (3 x 5 x 7 x 9 x 11)
= 0 : (3 x 5 x 7 x 9 x 11)
d) (27 – 3 x 9) : 9 x 1 x 3 x 5 x 7
= 0 : 9 x 1 x 3 x 5 x 7 Nếu đúng thì k cho mình nhé bạn!
1: Để 2/x là số tự nhiên thì \(\left\{{}\begin{matrix}\dfrac{2}{x}>0\\x\inƯ\left(2\right)\end{matrix}\right.\Leftrightarrow x\in\left\{1;2\right\}\)
2: Để 3/x là số tự nhiên thì \(\left\{{}\begin{matrix}\dfrac{3}{x}>0\\x\inƯ\left(3\right)\end{matrix}\right.\Leftrightarrow x\in\left\{1;3\right\}\)
3: Để 4/x là số tự nhiên là \(\left\{{}\begin{matrix}\dfrac{4}{x}>0\\x\inƯ\left(4\right)\end{matrix}\right.\Leftrightarrow x\in\left\{1;2;4\right\}\)
4: Để 5/x là số tự nhiên thì \(\left\{{}\begin{matrix}\dfrac{5}{x}>0\\x\inƯ\left(5\right)\end{matrix}\right.\Leftrightarrow x\in\left\{1;5\right\}\)
5: Để 6/x là số tự nhiên thì \(\left\{{}\begin{matrix}\dfrac{6}{x}>0\\x\inƯ\left(6\right)\end{matrix}\right.\Leftrightarrow x\in\left\{1;2;3;6\right\}\)
6: Để 9/x+1 là số tự nhiên thì \(\left\{{}\begin{matrix}x+1>0\\x+1\inƯ\left(9\right)\end{matrix}\right.\Leftrightarrow x+1\in\left\{1;3;9\right\}\)
=>\(x\in\left\{0;2;8\right\}\)
7: Để 8/x+1 là số tự nhiên thì
\(\left\{{}\begin{matrix}x+1\inƯ\left(8\right)\\x+1>0\end{matrix}\right.\)
=>x+1 thuộc {1;2;4;8}
=>x thuộc {0;1;3;7}
8: Để 7/x+1 là số tự nhiên thì
x+1>0 và x+1 thuộc Ư(7)
=>x+1 thuộc {1;7}
=>x thuộc {0;6}
9: Để 6/x+1 là số tự nhiên thì
x+1>0 và x+1 thuộc Ư(6)
=>x+1 thuộc {1;2;3;6}
=>x thuộc {0;1;2;5}
10: Để 5/x+1 là số tự nhiên thì
x+1>0 và x+1 thuộc Ư(5)
=>x+1 thuộc {1;5}
=>x thuộc {0;4}
Câu 1 :
a, \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}=\frac{2x-1}{3}-\frac{3-x}{4}\)
\(\Leftrightarrow\frac{6x+3}{4}+\frac{3-x}{4}=\frac{2x-1}{3}+\frac{5x+3}{6}\)
\(\Leftrightarrow\frac{5x+6}{4}=\frac{9x+1}{6}\Leftrightarrow\frac{30x+36}{24}=\frac{36x+4}{24}\)
Khử mẫu : \(30x+36=36x+4\Leftrightarrow-6x=-32\Leftrightarrow x=\frac{32}{6}=\frac{16}{3}\)
tương tự
\(\frac{19}{4}-\frac{2\left(3x-5\right)}{5}=\frac{3-2x}{10}-\frac{3x-1}{4}\)
\(< =>\frac{19.5}{20}-\frac{8\left(3x-5\right)}{20}=\frac{2\left(3-2x\right)}{20}-\frac{5\left(3x-1\right)}{20}\)
\(< =>95-24x+40=6-4x-15x+5\)
\(< =>-24x+135=-19x+11\)
\(< =>5x=135-11=124\)
\(< =>x=\frac{124}{5}\)
a. Đề đúng phải là \(\frac{1}{4}a^2+2ab^2+4b^4\)hoặc \(\frac{1}{4}a^2+2ab+4b^2\)
Ở đây mình giải trường hợp 2, bạn dựa theo để giải trường hợp 1 nhé :))
\(\frac{1}{4}a^2+2ab+4b^2\)
\(=\left(\frac{1}{2}a\right)^2+2ab+\left(2b\right)^2\)
\(=\left(\frac{1}{2}a\right)^2+2.\frac{1}{2}a.2b+\left(2b\right)^2\)
\(=\left(\frac{1}{2}a+2b\right)^2\)
b. \(25+10x+x^2\)
\(=x^2+2.x.5+5^2\)
\(=\left(x+5\right)^2\)
c. \(\frac{1}{9}-\frac{2}{3}y^4+y^8\)
\(=\left(y^4\right)^2-2.y^4.\frac{1}{3}+\left(\frac{1}{3}\right)^2\)
\(=\left(y^4-\frac{1}{3}\right)^2\)
Bài 8:
Ta có: \(A=-x^2+2x+4\)
\(=-\left(x^2-2x-4\right)\)
\(=-\left(x^2-2x+1-5\right)\)
\(=-\left(x-1\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi x=1
\(A=\left(a\text{x}7+a\text{x}8-a\text{x}15\right):\left(1+2+3+...+10\right)\)
\(A=\left(a\text{x}\left(7+8-15\right)\right):\left(1+2+3+...+10\right)\)
\(A=\left(a\text{x}0\right):\left(1+2+3+..+10\right)\)
\(A=0:\left(1+2+3+...+10\right)\)
\(A=0\)
\(B=\left(18-9\text{x}2\right)\text{x}\left(2+4+6+8+10\right)\)
\(B=\left(18-18\right)\text{x}\left(2+4+6+8+10\right)\)
\(B=0\text{x}\left(2+4+6+8+10\right)\)
\(B=0\)
a, \(\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\) \(\Rightarrow x^2-4x+4-\left(x^2-9\right)=6\)
\(\Rightarrow x^2-4x+4-x^2+9=6\) \(\Rightarrow13-4x=6\Rightarrow4x=7\Rightarrow x=\frac{7}{4}\)
b, \(9.\left(x+1\right)^2-\left(3x-2\right)\left(3x+2\right)=10\)
\(\Rightarrow9\left(x^2+2x+1\right)-\left[\left(3x\right)^2-2^2\right]=10\)
\(\Rightarrow9x^2+18x+9-9x^2+4=10\) \(\Rightarrow18x+13=10\Rightarrow18x=-3\Rightarrow x=\frac{-3}{18}\)
c, \(\left(x+3\right)^2+\left(4+x\right)\left(4-x\right)=10\)
\(\Rightarrow x^2+6x+9+4^2-x^2=10\) \(\Rightarrow6x+25=10\Rightarrow6x=-15\Rightarrow x=\frac{-15}{6}\)
d, \(25\left(x+3\right)^2+\left(1-5x\right)\left(1+5x\right)=8\)
\(\Rightarrow25.\left(x^2+6x+9\right)+1^2-\left(5x\right)^2=10\)
\(\Rightarrow25x^2+150x+225+1-25x^2=10\)
\(\Rightarrow150x+226=10\Rightarrow150x=-216\Rightarrow x=\frac{-36}{25}\)
e, \(-4\left(x-1\right)^2+\left(2x-1\right)\left(2x+1\right)=-3\)
\(\Rightarrow-4\left(x^2-2x+1\right)+4x^2-1=-3\)
\(\Rightarrow-4x^2+8x-4+4x^2-1=-3\)
\(\Rightarrow8x-5=-3\Rightarrow8x=-2\Rightarrow x=\frac{-1}{4}\)