1.Cho P(x) =ax2 + bx + c . Biết 25a +b + 2c =0 . Cho a =1 ; b = -6 ; c = 11 CMR P (x) không có nghiệm
2.Cho đa thức f(x ) + 5f(1/x)=x3 với mọi x khác 0. Tính f(3)
cần rất gấp .cảm ơn trước
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P\left(2\right)=4a+2b+c=2\left(5a+b+2c\right)-6a-3c=-6a-3c\)
\(P\left(-1\right)=a-b+c=-\left(5a+b+2c\right)+6a+3c\)
\(\Rightarrow P\left(2\right).P\left(-1\right)=\left(-6a-3c\right)\left(6a+3c\right)=-\left(6a+3c\right)^2\le0\) (đpcm)
\(P\left(-3\right)=a\left(-3\right)^2+b\left(-3\right)+c=9a-3b+c\)
\(P\left(4\right)=a\left(4\right)^2+b.4+c=16a+4b+c\)
Cộng vế theo vế
Ta có: \(P\left(-3\right)+P\left(4\right)=\left(9a-3b+c\right)+\left(16a+4b+c\right)=25a+b+2c=0\)
f(-2).f(3) = (4a-2b+c).(9a+3b+c)
= (4a-2b+c).(13a+b+2c-(4a-2b+c))
Mà 13a+b+2c = 0 theo giả thiết
=> f(-2).f(3) = -[(4a-2b+c)^2]
Có (4a-2b+c)^2 luôn >= 0 => f(-2).f(3) luôn nhỏ hơn hoặc bằng 0
Ta có: \(f\left(x\right)=ax^2+bx+c\)
\(\Rightarrow\hept{\begin{cases}f\left(-3\right)=9a-3b+c\\f\left(4\right)=16a+4a+c\end{cases}}\) \(\Rightarrow f\left(-3\right)+f\left(4\right)=25a+b+2c=0\)
\(\Rightarrow f\left(-3\right)=-f\left(4\right)\)
Khi đó: \(f\left(-3\right)\cdot f\left(4\right)=-f\left(4\right)\cdot f\left(4\right)=-\left[f\left(4\right)\right]^2< 0\)
Đề bài bị sai rồi phần đpcm phải là "\(\le\)" chứ không phải "\(< \)
Ta có : \(f\left(x\right)=ax^2+bx+c\)
\(\Rightarrow\hept{\begin{cases}f\left(-3\right)=a.\left(-3\right)^2+b.\left(-3\right)+c=9a-3b+c\\f\left(4\right)=a.4^2+b.4+c=16a+4b+c\end{cases}}\)
\(\Rightarrow f\left(4\right)+f\left(-3\right)=\left(16a+4b+c\right)+\left(9a-3b+c\right)=25a+b+2c=0\)
\(\Rightarrow f\left(-3\right)+f\left(4\right)=0\)
\(\Rightarrow f\left(-3\right)=-f\left(4\right)\)
\(\Rightarrow f\left(-3\right).f\left(4\right)=-f\left(4\right).f\left(4\right)=-[f\left(4\right)]^2\le0\)\(\forall x\)
\(\Rightarrowđpcm\)
\(1,\text{Ta có: với a=1;b=-6;c=11 thì }P\left(x\right)=x^2-6x+11=\left(x-3\right)^2+2>0\Rightarrow\text{vô nghiệm}\)
\(2,\text{ với: x=3}\Rightarrow f\left(3\right)+5f\left(\frac{1}{3}\right)=27\)
\(với:x=\frac{1}{3}\text{ thì:}f\left(\frac{1}{3}\right)+5f\left(3\right)=\frac{1}{27}\)
\(\Rightarrow6\left(f\left(3\right)+f\left(\frac{1}{3}\right)\right)=\frac{730}{27}\Leftrightarrow f\left(3\right)+f\left(\frac{1}{3}\right)=\frac{365}{81}\Rightarrow4f\left(3\right)=\frac{-362}{81}\Rightarrow f\left(3\right)=\frac{-362}{324}\)
shitbo ơi giải thihs hỗ 4f(3)