K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2017

Chọn C

 

3 tháng 1 2017

Ta có:

|a| < 1 và |b - 1| < 1008

=> |a|.|b - 1| < 1008

<=> |ab - a| < 1008

Ta lại có: 

|ab - c| = |ab - a + a - c| \(\le\) |ab - a| + |a - c|

< 1008 + 1008 = 2016

7 tháng 11 2017

Ta có : (a-b)^2 >= 0 với mọi a,b

<=> a^2-2ab+b^2 >= 0

<=> a^2+b^2 >= 2ab

<=> a^2+2ab+b^2 >= 4ab

<=> (a+b)^2 >= 4ab

Với a,b > 0 thì ta chia 2 vế cho ab .(+b) được :

a+b/ab >= 4/a+b

<=>1/a + 1/b >=4ab

Áp dụng bđt trên thì A >= 4/(a^2+b^2+2ab) = 4/(a+b)^2 >= 4/1^2 = 4

Dấu "=" xảy ra <=> a=b ; a+b =1  <=> a=b=1/2

Vậy Min A = 4 <=> x = y= 1/2

19 tháng 4 2022

`a+ble1<=>(a+b)^2le1`

Áp dụng bđt `1/(a)+1/bge4/(a+b)` ta có:

`Age4/(a^2+2ab+b^2)=4/(a+b)^2=4/1=4`

Dấu `=` xảy ra khi:`a^2+b^2=2ab<=>(a-b)^2=0<=>a=b` và `a+b=1`

`<=>a=b=1/2`

Vậy GTNN của `A=4` khi và chỉ khi `a=b=1/2` 

24 tháng 6 2019

Ta có: \(\frac{ab+c}{c+1}=\frac{ab+1-a-b}{c+a+b+c}=\frac{-b\left(1-a\right)+\left(1-a\right)}{\left(a+c\right)+\left(b+c\right)}\)

\(=\frac{\left(1-a\right)\left(1-b\right)}{\left(a+c\right)+\left(b+c\right)}=\frac{\left(b+c\right)\left(a+c\right)}{\left(a+c\right)+\left(b+c\right)}\)

\(\le\frac{1}{4}\left(\frac{\left(b+c\right)\left(a+c\right)}{a+c}+\frac{\left(b+c\right)\left(a+c\right)}{b+c}\right)=\frac{a+b+2c}{4}\)

Tương tự: \(\frac{bc+a}{a+1}=\frac{b+c+2a}{4}\)

\(\frac{ca+b}{b+1}=\frac{c+a+2b}{4}\)

Cộng vế theo vế ta có: 

\(\frac{ab+c}{c+1}+\frac{bc+a}{a+1}+\frac{ca+b}{b+1}\le\frac{4a+4b+4c}{4}=a+b+c=1\)

24 tháng 6 2019

Thiếu: 

Dấu "=" xảy ra khi và chỉ khi:

\(\frac{1}{a+b}=\frac{1}{a+c};\frac{1}{a+c}=\frac{1}{b+c};\frac{1}{b+c}=\frac{1}{b+a};a+b+c=1\)

<=> a=b=c=1/3

3 tháng 12 2018

sai đề

6 tháng 5 2016

Ta thấy rằng do a < b nên \(\log_ab>1\)

Khi đó nếu xét cùng cơ số là b thì : \(\log_a\left(\log_ab\right)>\log_b\left(\log_ab\right)>0\)

Ta cũng có \(\log_ca< 1\) do a < c, suy ra \(0>\log_c\left(\log_ca\right)>\log_b\left(\log_ca\right)\)

Từ đó suy ra :

\(\log_a\left(\log_ab\right)+\log_b\left(\log_bc\right)+\log_c\left(\log_ca\right)>\log_b\left(\log_ab.\log_bc.\log_ca\right)=0\)