Cho \(\dfrac{a+5}{a-5}=\dfrac{b+6}{b-6}\) (a ≠ 5; b ≠ 6). Chứng minh rằng \(\dfrac{a}{b}=\dfrac{5}{6}\)
mọi người ơi giúp mik với, ai làm đc mik tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a+5}{a-5}=\dfrac{b+6}{b-6}\Leftrightarrow\left(a+5\right)\left(b-6\right)=\left(b+6\right)\left(a-5\right)\)
nhân ra ik ròi suy ra đpcm :D
\(\dfrac{a+5}{a-5}=\dfrac{b+6}{b-6}\)
\(\Rightarrow\left(a+5\right)\left(b-6\right)=\left(a-5\right)\left(b+6\right)\)
\(\Rightarrow ab+5b-6a-30=ab-5b+6a-30\)
\(\Rightarrow5b-6a=-5b+6a\)
\(\Rightarrow10b=12a\)
\(\Rightarrow5b=6a\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{5}{6}\left(đpcm\right)\)
Vậy \(\dfrac{a}{b}=\dfrac{5}{6}\)
Sửa câu a:
(x - 2)2 - 36 = 0
(x - 2 - 6)(x - 2 + 6) = 0
(x - 8)(x + 4)= 0
\(\Leftrightarrow \begin{bmatrix} x - 8= 0 & & \\ x + 4 = 0 & & \end{bmatrix}\)
\(\Leftrightarrow \begin{bmatrix} x = 8 & & \\ x = - 4 & & \end{bmatrix}\)
pn bỏ dấu ngoặc bên phải nhé
Vậy x = 8; x = - 4
2:
\(\dfrac{a+5}{a-5}=\dfrac{b+6}{b-6}\)
\(\Rightarrow\dfrac{a+5}{b+6}=\dfrac{a-5}{b-6}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{a+5}{b+6}=\dfrac{a-5}{b-6}=\dfrac{a+5-a+5}{b+6-b+6}=\dfrac{10}{12}=\dfrac{5}{6}=\dfrac{a+5+a-5}{b+6+b-6}=\dfrac{2a}{2b}=\dfrac{a}{b}\)
Từ đó suy ra \(\dfrac{a}{b}=\dfrac{5}{6}\)
\(\RightarrowĐPCM\)
\(a)\)\(\dfrac{a}{b}\times4+\dfrac{1}{6}=\dfrac{19}{6}\)
\(\dfrac{a}{b}\times4=\dfrac{19}{6}-\dfrac{1}{6}\)
\(\dfrac{a}{b}\times4=\dfrac{18}{6}\)
\(\dfrac{a}{b}=\dfrac{18}{6}\div4\)
\(\dfrac{a}{b}=\dfrac{18}{6}\times\dfrac{1}{4}\)
\(\dfrac{a}{b}=\dfrac{18}{24}\)
\(a,A=\dfrac{\dfrac{5}{4}+\dfrac{5}{5}+\dfrac{5}{7}-\dfrac{5}{11}}{\dfrac{10}{4}+\dfrac{10}{5}+\dfrac{10}{7}-\dfrac{10}{11}}\\ =\dfrac{5.\left(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}{10.\left(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}\\ =\dfrac{5}{10}\\ =\dfrac{1}{2}\)
Vậy \(A=\dfrac{1}{2}\)
\(b,B=\dfrac{2+\dfrac{6}{5}-\dfrac{6}{7}-\dfrac{6}{11}}{\dfrac{2}{3}+\dfrac{2}{5}-\dfrac{2}{7}-\dfrac{2}{11}}\\ =\dfrac{3.\left(\dfrac{2}{3}+\dfrac{2}{5}-\dfrac{2}{7}-\dfrac{2}{11}\right)}{\dfrac{2}{3}+\dfrac{2}{5}-\dfrac{2}{7}-\dfrac{2}{11}}\\ =3\)
Vậy \(B=3\)
\(a^5+b^2+ab+6\ge3a^2b+6\)
\(\Rightarrow P\le\dfrac{1}{\sqrt{3}}\left(\dfrac{1}{\sqrt{a^2b+2}}+\dfrac{1}{\sqrt{b^2c+2}}+\dfrac{1}{\sqrt{c^2a+2}}\right)\le\sqrt{\dfrac{1}{a^2b+2}+\dfrac{1}{b^2c+2}+\dfrac{1}{c^2a+2}}=\sqrt{Q}\)
\(Q=\dfrac{c}{a+2c}+\dfrac{a}{b+2a}+\dfrac{b}{c+2b}=\dfrac{1}{2}\left(1-\dfrac{a}{a+2c}+1-\dfrac{b}{b+2a}+1-\dfrac{c}{c+2b}\right)\)
\(Q=\dfrac{3}{2}-\dfrac{1}{2}\left(\dfrac{a^2}{a^2+2ac}+\dfrac{b^2}{b^2+2ab}+\dfrac{c^2}{c^2+2bc}\right)\)
\(Q\le\dfrac{3}{2}-\dfrac{1}{2}\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=1\)
\(\Rightarrow P\le\sqrt{1}=1\)
Dấu "=" xảy ra khi \(a=b=c=1\)
a) Ta có: \(a\left(-\dfrac{3}{2}\right)+a\cdot\dfrac{1}{4}-a\cdot\dfrac{5}{6}\)
\(=a\left(-\dfrac{3}{2}+\dfrac{1}{4}-\dfrac{5}{6}\right)\)
\(=a\left(\dfrac{-18}{12}+\dfrac{3}{12}-\dfrac{10}{12}\right)\)
\(=a\cdot\dfrac{-25}{12}\)(1)
Thay \(a=\dfrac{3}{5}\) vào biểu thức (1), ta được:
\(\dfrac{3}{5}\cdot\dfrac{-25}{12}=\dfrac{-75}{60}=\dfrac{-5}{4}\)
a)\(\dfrac{a}{b}=5-\dfrac{3}{5}=\dfrac{25}{5}-\dfrac{3}{5}=\dfrac{22}{5}\)
b)\(\dfrac{a}{b}=\dfrac{5}{6}+\dfrac{4}{7}=\dfrac{35}{42}+\dfrac{24}{42}=\dfrac{59}{42}\)
c)\(\dfrac{a}{b}=\dfrac{3}{5}:\dfrac{2}{3}=\dfrac{3}{5}\times\dfrac{3}{2}=\dfrac{9}{10}\)
bài 1
a)\(=\dfrac{16}{40}+\dfrac{15}{40}=\dfrac{31}{40}\)
b)\(=\dfrac{7}{6}-\dfrac{4}{6}=\dfrac{3}{6}=\dfrac{1}{2}\)
c)\(=\dfrac{30}{9}=\dfrac{10}{3}\)
d)\(=\dfrac{8}{5}\times\dfrac{7}{4}=\dfrac{56}{20}=\dfrac{14}{5}\)
\(\dfrac{a+5}{a-5}=\dfrac{b+6}{b-6}\Leftrightarrow\left(a+5\right)\left(b-6\right)=\left(a-5\right)\left(b+6\right)\\ \Leftrightarrow ab-6a+5b-30=ab+6a-5b-30\\ \Leftrightarrow12a=10b\\ \Leftrightarrow6a=5b\Leftrightarrow\dfrac{a}{b}=\dfrac{5}{6}\)