a) Cho a + b = 7; ab = 10. Tính A = a2 + b2; B = a3 + b3
b) Chứng minh -x2 + x - 1 < 0 với mọi số thực x
c) Chứng minh x2 + xy + y2 + 1 > 0 với mọi số thực x và y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
với a, b thuộc Z
a) Ta có: 3. (3a+4b)=9a+12b=(7a+11b)+(2a+b) chia hết cho 3 mà 7a+11b chia hết cho 3 suy ra (2a+b) chia hết cho 3
b) 7(a+b)=(4a+3b)+(3a+4b) chia hết cho 7 mà 4a+3b chia hết cho 7 suy ra 3a+4b chia hết cho 7
Số a có dạnh 7k
Số b có dạng 7h + 2
Số c có dạng 7g + 3
a) a + b = 7k + 7h + 2 = 7(k+h) + 2
Vậy chia 7 dư 2
b) b + c = 7h + 2 + 7g + 3 = 7(g+h) + 5
Vậy chia 7 dư 5
a/
\(\overline{aba}=101.a+10b=98a+3a+7b+3b=\)
\(=\left(98a+7b\right)+3\left(a+b\right)\)
\(98a+7b⋮7;\left(a+b\right)⋮7\Rightarrow3\left(a+b\right)⋮7\)
\(\Rightarrow\overline{abc}=\left(98a+7b\right)+3\left(a+b\right)⋮7\)
b/ xem lại đề bài
\(a)\) Ta có :
\(A=a^2+b^2=\left(a+b\right)^2-2ab=7^2-2.10=49-20=29\)
Vậy \(A=29\)
\(B=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=7\left(29-10\right)=7.19=133\)
Vậy \(B=133\)
\(b)\) Đặt \(A=-x^2+x-1\) ta có :
\(-A=x^2-x+1\)
\(-A=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}\)
\(-A=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
\(A=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le\frac{3}{4}< 0\)
Vậy \(A< 0\) với mọi số thực x
Chúc bạn học tốt ~