Biết rằng đồ thị hàm số y = 4 x 2 + 4 x + 3 - a x + b ; a , b ∈ ℝ có đường tiệm cận ngang là đường thẳng y = 2018. Giá trị lớn nhất của P = a+b là :
A. 2019
B. 2018
C. 2017
D. 2020
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm là:
\(x^2-6x=-x^2-4\)
=>\(x^2-6x+x^2+4=0\)
=>\(2x^2-6x+4=0\)
=>\(x^2-3x+2=0\)
=>(x-1)(x-2)=0
=>\(\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Khi x=1 thì \(y=-1^2-4=-1-4=-5\)
Khi x=2 thì \(y=-2^2-4=-8\)
Vậy: A(1;-5); B(2;-8)
\(y_A+y_B=\left(-5\right)+\left(-8\right)=-13\)
a) Thay x = 4 và y = 11 vào y = 3x + b ta được:
11 = 3.4 + b = 12 + b
=> b = 11 – 12 = -1
Ta được hàm số y = 3x – 1
- Cho x = 0 => y = -1 được A(0; -1)
- Cho x = 1 => y = 2 được B(1; 2).
Nối A, B ta được đồ thị hàm số y = 3x – 1.
b) Thay tọa độ điểm A(-1; 3) vào phương trình y = ax + 5 ta có:
3 = a(-1) + 5
=> a = 5 – 3 = 2
Ta được hàm số y = 2x + 5.
- Cho x = -2 => y = 1 được C(-2; 1)
- Cho x = -1 => y = 3 được D(-1; 3)
Nối C, D ta được đồ thị hàm số y = 2x + 5.
\(1,\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{3x+y}{9+5}=\dfrac{28}{14}=2\\ \Rightarrow\left\{{}\begin{matrix}x=6\\y=10\end{matrix}\right.\\ 2,\\ a,a=2\Rightarrow y=f\left(x\right)=2x\\ b,f\left(-0,5\right)=2\left(-0,5\right)=-1\\ f\left(\dfrac{3}{4}\right)=2\cdot\dfrac{3}{4}=\dfrac{3}{2}\\ c,\text{Thay }x=-4;y=2\Rightarrow-4a=2\Rightarrow a=-\dfrac{1}{2}\)
Ta có: x/y=3/5 ⇒ x/3=y/5
Theo tính chất của dãy tỉ số bằng nhau ta có:x/3=y/5=3x/3.3=y/5= 3x+y9/y9+5=28/14=2
Do đó:
x/3=2 ⇒x=2.3=6
y/5=2 ⇒y=2.5=10
Vậy x=6 và y=10.
Đáp án C
Phương pháp : Xác định hàm số f’(x) từ đó tính được
Cách giải : Ta dễ dàng tìm được phương trình parabol là
Đồ thị hàm số đi qua gốc tọa độ
Chọn đáp án A.