K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc BEH+góc BFH=90 độ

=>BEHF nội tiếp

b: góc ABK=1/2*sđ cung AK=90 độ

Xét ΔABK vuông tại B và ΔAFC vuông tại F có

góc AKB=góc ACF

=>ΔABK đồng dạng với ΔAFC

a) Xét tứ giác BEDC có:
ˆBEC=ˆBDCBEC^=BDC^
ˆBECBEC^và ˆBDCBDC^ cùng nhìn cạnh BC
=> BEDC là tứ giác nội tiếp 
b) Do BEDC là tứ giác nội tiếp nên: ˆBED+ˆBCD=180oBED^+BCD^=180o
Mà ˆBED+ˆDEA=180o⇒ˆBCD=ˆDEABED^+DEA^=180o⇒BCD^=DEA^(*)
Mặt khác ta có:
ˆxAB=ˆACBxAB^=ACB^(cùng chắn cung AB)
hay ˆxAE=ˆBCDxAE^=BCD^(**)
Từ (*) và (**) suy ra ˆDEA=ˆxAEDEA^=xAE^
=> xy song song với ED (2 góc sole trong) (đpcm)

c) Do tứ giác BEDC là tứ giác nội tiếp
Mà ˆEBDEBD^và ˆECDECD^cùng nhìn cạnh ED
=> ˆEBD=ˆECDEBD^=ECD^(đpcm)

a: Kẻ tiếp tuyến Ax tại A của (O)

=>góc xAC=góc ABC=góc AEF

=>Ax//FE

=>OA vuông góc FE tại I

góc ABJ=1/2*180=90 độ

góc FBJ+góc FIJ=180 độ

=>FBJI nội tiếp

b: Xét ΔMNC và ΔMBA có

góc MNC=góc MBA

góc M chung

=>ΔMNC đồng dạng vơi ΔMBA

=>MN/MB=MC/MA

=>MN*MA=MB*MC

Xét ΔMBF và ΔMEC có

góc MBF=góc MEC

góc M chung

=>ΔMBF đồng dạg với ΔMEC

=>MB/ME=MF/MC

=>MB*MC=ME*MF=MN*MA

=>MF/MA=MN/ME

=>ΔMFN đồng dạng với ΔMAE
=>góc MFN=góc MAE

=>góc NAE+góc NFE=180 độ

=>ANFE nội tiếp

a: Kẻ tiếp tuyến Ax tại A của (O)

=>góc xAC=góc ABC=góc AEF

=>Ax//FE

=>OA vuông góc FE tại I

góc ABJ=1/2*180=90 độ

góc FBJ+góc FIJ=180 độ

=>FBJI nội tiếp

b: Xét ΔMNC và ΔMBA có

góc MNC=góc MBA

góc M chung

=>ΔMNC đồng dạng vơi ΔMBA

=>MN/MB=MC/MA

=>MN*MA=MB*MC

Xét ΔMBF và ΔMEC có

góc MBF=góc MEC

góc M chung

=>ΔMBF đồng dạg với ΔMEC

=>MB/ME=MF/MC

=>MB*MC=ME*MF=MN*MA

=>MF/MA=MN/ME

=>ΔMFN đồng dạng với ΔMAE
=>góc MFN=góc MAE

=>góc NAE+góc NFE=180 độ

=>ANFE nội tiếp

28 tháng 4 2023

- Dựng đường kính AK của (O).

- △ACK nội tiếp đường tròn đường kính AK nên △ACK vuông tại C.

- Xét △AHB và △ACK có: \(\left\{{}\begin{matrix}\widehat{AHB}=\widehat{ACK}=90^0\\\widehat{ABH}=\widehat{AKC}\left(=\dfrac{1}{2}sđ\stackrel\frown{BC}\right)\end{matrix}\right.\)

\(\Rightarrow\Delta AHB\sim\Delta ACK\left(g-g\right)\)

\(\Rightarrow\dfrac{AH}{AC}=\dfrac{AB}{AK}\Rightarrow AH=\dfrac{AB.AC}{2R}\)

\(S_{ABC}=\dfrac{AH.BC}{2}=\dfrac{\dfrac{AB.AC}{2R}.BC}{2}=\dfrac{AB.AC.BC}{4R}\)