Vẽ góc xOy bằng 60o. Lấy điểm A thuộc Ox, điểm B thuộc Oy sao cho OA= 3cm;
OB = 4cm. O có là trung điểm của AB không? Vì sao? Tính AB?
giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc xOM=120 độ
b: AB=3+6=9cm
c: BC=AC=9/2=4,5cm
OC=4,5-3=1,5cm
A. Ta có: Góc xOy = 90 độ (do hai trục Ox và Oy vuông góc với nhau)
Góc xOm = 120 độ => góc mOy + góc xOy + góc xOm = 360 độ (tổng góc bên trong của một tam giác)
=> Góc mOy = 150 độ
Do tia Om không trùng với tia Ox và tia Oy
=> Góc xOm = 120 độ
B.Ta có : OA+OA=AB
=> 6+3=AB
=> AB=6cm
C.vì C là trung điểm của AB nên ta có AC = CB = AB/2 = 4,5cm.
Vậy AC=4,5cm
Ta có : 0C=4,5-3=1,5cm
a: Xét ΔOKB vuông tại K và ΔOHA vuông tại H có
OB=OA
\(\widehat{O}\) chung
Do đó: ΔOKB=ΔOHA
Suy ra: OK=OH
hay ΔOHK cân tại O
a: Xét ΔOKB vuông tại K và ΔOHA vuông tại H có
OB=OA
\(\widehat{O}\) chung
Do đó: ΔOKB=ΔOHA
Suy ra: OK=OH
hay ΔOHK cân tại O
a: Xét ΔOHA vuông tại H và ΔOKB vuông tại K có
OA=OB
\(\widehat{O}\) chung
Do đó: ΔOHA=ΔOKB
Suy ra: OH=OK
xét tam giác OMI và tam giác OAI có : OI chung
IM = IA (gt)
^OIM = ^OIA = 90
=> tam giác OMI = tam giác OAI (2cgv)
=> OM = OA (1)
xét tam giác OHM và tam giác OHB có : OH chung
HB = HM (gt)
^OHB = ^OHM = 90
=> tam giác OHM = tam giác OHB (2cgv)
=> OB = OM và (1)
=> OA = OB
Hình bạn tự kẻ nha , mình ghi bải giải
Xét tam giác OAM có : OI là đường cao(Vì OI vuông góc với AM )
OI là trung tuyến(Vì I là trung điểm AM)
=> Tam giác OAM cân tại O (vì có đường cao vừa là đường trung tuyến)
=> OA = OM (1)
Xét tam giác OBM có : OH là đường cao(Vì OH vuông góc với BM)
OH là trung tuyến(Vì H là trung điểm BM)
=> Tam giác OBM cân tại O(Vì có đường cao vừa là đường trung tuyến)
=> OM = OB (2)
Từ (1) và (2) suy ra OA = OB (vì cùng bằng OM)
Học Tốt
Để tính giá trị của ab, ta sử dụng định lí Pythagoras trong tam giác OAB:
ab^2 = oa^2 + ob^2
ab^2 = 4^2 + 3^2
ab^2 = 16 + 9
ab^2 = 25
ab = √25
ab = 5 cm
Vì góc TOY = 70 độ và góc YOZ = 110 độ, nên góc TOZ = góc TOY + góc YOZ = 70° + 110° = 180°.
Do đó, số đo góc ZOT là 180°.