Cho tam giác MNE vuông tại M , cho MF là tia phân giác ( F thuộc NE ) biết NF trên EF = 9 phần 16 ; NE =15cm
Tính MN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOMF và ΔOEN có
OM=OE
\(\widehat{O}\) chung
OF=ON
Do đó: ΔOMF=ΔOEN
Suy ra: MF=EN
a]Xét hai tam giác vuông MNE và tam giác vuông FNE có ;
cạnh NE chung
góc MNE = góc FNE [ gt ]
Do đó ; tam giác MNE = tam giác FNE [ cạnh huyền - góc nhọn ]
b]Theo câu [ a ] ; tam giác MNE = tam giác FNE
\(\Rightarrow\) MN = FN ; EN = EF
\(\Rightarrow\) NE là đường trung trực của tam giác NMF
c]Vì ba điểm M , E , P thẳng hàng nên
góc MEP = 180độ = góc MEN + góc FEN + góc FEP
mà góc FEP = góc MEQ
suy ra ; góc QEF = góc MEN + góc FEN + góc MEQ = 180độ
vậy ba điểm Q,E,F thẳng hàng
học tốt nhé
kết bạn với mình nhé
Ta có : \(\Delta MNE=\Delta FNE\left(cma\right)\)
\(\Rightarrow ME=EF\)( 2 cạnh tương ứng )
Xét \(\Delta QME\)và \(\Delta PFE\)có :
\(MQ=EF\left(gt\right)\)
\(\widehat{QME}=\widehat{PFE}\left(=90^o\right)\)
\(ME=EF\left(cmt\right)\)
\(\Rightarrow\Delta QME=\Delta PFE\left(c.g.c\right)\)
\(\Rightarrow\widehat{MEQ}=\widehat{PEF}\)( 2 góc tương ứng )
Ta có : \(\widehat{MEF}+\widehat{FEP}=180^o\)( kề bù )
mà \(\widehat{FEP}=\widehat{MEQ}\left(cmt\right)\)
\(\Rightarrow\widehat{MEF}+\widehat{MEQ}=180^o\)
\(\Rightarrow\)3 điểm Q , E , F thẳng hàng
M A B C N H F D
a) Xét \(\Delta\)AHB và \(\Delta\)DHB có:
^AHB = ^DHB ( 1v )
HA = HD ( giả thiết )
MH chung
=> \(\Delta\)AHB = \(\Delta\)DHB ( c.g.c)
b) Từ (a) => ^ABH = ^DHB => BH là phân giác ^ABD
Vì \(\Delta\)ABC nhọn => H nằm trong đoạn BC
=> BC là phân giác ^ABD
c) NF vuông BC
AH vuông BC
=> NF // AH
=> ^NFM = ^HAM ( So le trong )
Lại có: ^HMA = NMF ( đối đỉnh ) và MA = MF ( giả thiết )
=> \(\Delta\)NFM = \(\Delta\)HAM ( g.c.g)
=> NF = AH ( 2)
Từ ( a) => AH = HD ( 3)
Từ (2) ; (3) => NF = HD
A B D H C
a) Xét \(\Delta AHB\)và \(\Delta DHB\)có:
\(AH=DH\left(gt\right)\)
BH là cạnh chung
\(\widehat{AHB}=\widehat{DHB}\left(=90^0\right)\)
\(\Rightarrow\Delta ABH=\Delta DBH\left(c.g.c\right)\)
b) Vì \(\Delta ABH=\Delta DBH\left(cmt\right)\)
\(\Rightarrow\widehat{ABH}=\widehat{DBH}\)( 2 góc tương ứng )
=> BC là tia phân giác \(\widehat{ABD}\)( đpcm )
A)Xét t/giác AHB và t/giác DHB có
AH=AD(gt)
Góc AHB=góc DHB=900
BH là cạnh chung
Suy ra t/giác AHB=t/giác DHB(c-g-c)
B)Ta có Góc ABH=góc DBH( t/giác ABH=t/giác DBH)
Suy ra :BC là tia phân giác của góc ABD
C)Xét t/giác AHM vuông tại H và t/giác FNM vuông tại N
AM=FM(gt)
Góc AHM= góc FMN(2 góc đối đỉnh)
Suy ra t/giác AHM =t/giác FNM( cạnh huyền -góc nhọn)
Suy ra AH=NF (2 cạnh tương ứng)
Mà AH=HD (gt)
Suy ra NF=HD
Chúc bn hc tốt
1)
a) Áp dụng định lí Pytago vào ΔMNF vuông tại M, ta được:
\(NF^2=MF^2+MN^2\)
\(\Leftrightarrow NF^2=9^2+12^2=225\)
hay NF=15(cm)
Xét ΔMNF vuông tại M có
\(\sin\widehat{MFN}=\dfrac{MN}{NF}=\dfrac{9}{15}=\dfrac{3}{5}\)
hay \(\widehat{MFN}\simeq37^0\)
\(\Leftrightarrow\widehat{MNF}=53^0\)
a: NF=15cm
Xét ΔMNF vuông tại M có sin MFN=MN/NF=3/5
nên góc MFN=37 độ
=>góc MNF=53 độ
\(MO=\dfrac{9\cdot12}{15}=\dfrac{108}{15}=7.2\left(cn\right)\)
\(FO=\dfrac{12^2}{15}=9.6\left(cm\right)\)
b: Xét ΔMFN và ΔFEM có
góc MFN=góc FEM
góc FNM=góc EMF
Do đó: ΔMFN đồng dạng với ΔFEM
Suy ra:MF/FE=MN/MF
hay \(MF^2=MN\cdot FE\)
Bạn tự vẽ hình nha
a, vì NM=NE nên góc NEM=NME 1 mà xx' song song với yy' nên xME = MEN 2
Từ 1,2 xME=EMN. Tương tự NEF = xMF
b, theo câu a ME MF là tia p/g nên xMN+ NMx = 180 độ nên EMF = 90 độ nên tam giác MEF vuông tại M