Cho tam giác MNE có MN = 9cm ; NE = 12cm ; ME = 15cm
a) Chứng minh rằng tam giác MNE vuông
b) Kẻ MA , EB là phân giác của góc NME và góc NEM chúng cắt nhau ở I . Tính góc MIE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình và giả thiết nha
Xét hai tam giác MNE và tam giác MDE có :
+ N = P
+ AE là cạnh chung
+ M1 = M2
\(\Rightarrow\)Tam giác MNE và tam giác MPE ( g - c - g )
b,Ta có :\(\widehat{MNE}=\widehat{MPE}\)( Hai góc tương ứng )
\(\Rightarrow\)NE = PE ( Hai cạnh tương ứng )
Nếu thấy đúng thì \(K\)cho mình nha !
Tam giác EFD là tam giác vuông vì \(20^2=12^2+16^2\)
Áp dụng định lý Pitago: \(BC=\sqrt{AB^2+AC^2}=15\left(cm\right)\)
Hệ thức lượng:
\(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=7,2\left(cm\right)\)
\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=5,4\left(cm\right)\)
\(CH=BC-BH=9,6\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=9^2+12^2=225\)
hay BC=15(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot15=9\cdot12=108\)
hay AH=7,2(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH=\dfrac{AB^2}{BC}=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên CH=BC-BH=15-5,4=9,6(cm)
a) ta có
MN2+NE2=92+122=225 (1)
ME2=152=225 (2)
Từ (1) và (2) suy ra
ME2=MN2+NE2
Nên áp dụng dịnh lý Pi-ta-go-đảo ta có
tam giác MNE vuông tại N
b) ta có
góc AME =1/2 góc NME
góc MEB=1/2 góc MEN
nê cộng cả hai vế với nhau ta có
góc AME+góc MEB=1/2(góc NME+góc MEN)
Mà Góc NME +góc MEN=90 dộ
=>Góc AME+góc MEB= 1/2.90 dộ
=>góc AME+góc MEB=45 dộ
Xét tam giác MIE ta có
góc IME+góc MEI+góc MIE =180 độ
=>45 độ +góc MIE=180
=>góc MIE = 180-45=135 dộ
N M E 9 12 15
a/ Ta có: ME^2=15^2=225
NE^2=12^2=144
MN^2=9^2=81
=> ME^2=MN^2+NE^2
=> Tam giác NME vuông tại N