Cho tam giác ABC có AB= AC. Gọi M là một điểm nằm trong tam giác sao cho MB= MC; N là trung điểm của BC. Chứng minh rằng:
a)Tam giác ABM= tam giác ACM
b) AM là tia phân giác của góc BAC
c) Ba điểm A, M, N thẳng hàng
d) AM là đường trung trực của đoạn thẳng BC
A B C M N
a, xét tam giác ABM và tam giác ACM có:
AB=AC
AM chung
BM=CM
=> tam giác ABM= tam giác ACM (c.c.c)
b,
Tam giác ABM= tam giác ACM => góc BAM= góc CAM
=> AM là tia phân giác của góc BAC
c, AM là tia phân giác của góc BAC => AN là tia phân giác của góc BAC
=> A, M, N thẳng hàng
còn thiếu câu b là tia AM nằm giữa 2 toa AB và AC nữa nhé