Cho tam giác ABC ; điểm M thuộc cạnh BC,kẻ MN// AB; MP//AC (N thuộc AC, P thuộc AB)
a) Chứng minh \(\frac{BP}{AB}+\frac{CN}{AC}=1\)
b) Tìm vị trí của điểm M trên BC để tứ giác ANMP có diện tích lớn nhất?
AI BIẾT LÀM HỘ NHANH VỚI Ạ,CẦN RẤT GẤP Ạ
AI LÀM ĐC MÌNH XIN CẢM ƠN Ạ
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
TB
0
TB
2
30 tháng 6 2016
Mik ko giải chi tiết đc p thứ lỗi nhé: Đ/S:
Lấy H sao cho BH = 1 cm
2 tháng 5 2017
Giải:
a, Ta có: \(AB^2+AC^2=6^2+8^2=100\)
\(BC^2=100\)
\(\Rightarrow AB^2+AC^2=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A ( đpcm )
b, \(\Delta ABC\) vuông tại A có AM là trung tuyến
\(\Rightarrow AM=\dfrac{1}{2}BC\Rightarrow AM=5\)
Mà \(AG=\dfrac{2}{3}.AM\Rightarrow AG=\dfrac{10}{3}\left(cm\right)\)
Vậy...
a
Áp dụng định lý Thales ta có:
\(\frac{BP}{AB}=\frac{BM}{BC};\frac{CN}{AC}=\frac{CM}{BC}\Rightarrow\frac{PB}{AB}+\frac{CN}{AC}=\frac{BM}{BC}+\frac{CM}{BC}=1\)
b
Gọi \(S_{BPM}=a^2;S_{CMN}=b^2;S_{ABC}=S^2\)
PM//AC nên \(\Delta\)BPM ~ \(\Delta\)BAC =>\(\frac{S_{BPM}}{S_{ABC}}=\frac{a^2}{S^2}=\frac{BM^2}{BC^2}\Rightarrow\frac{BM}{BC}=\frac{a}{S}\)
MN//AB nên \(\Delta\)CMN ~ \(\Delta\)CBA => \(\frac{S_{CMN}}{S_{ABC}}=\frac{b^2}{S^2}=\frac{CM^2}{BC^2}\Rightarrow\frac{CM}{BC}=\frac{b}{S}\)
\(\Rightarrow\frac{a}{S}+\frac{b}{S}=1\Rightarrow a+b=S\Rightarrow S^2=\left(a+b\right)^2\)
\(\Rightarrow S_{AMNP}=\left(a+b\right)^2-a^2-b^2=2ab\le\frac{\left(a+b\right)^2}{2}=\frac{S^2}{2}\) ( không đổi )
Vậy Max \(S_{AMNP}=\frac{S_{ABC}}{2}\) khi M là trung điểm của BC.
Cảm ơn nha