Cho hình chữ nhật ABCD . AH vuông góc BD tại H . Gọi I ; M lần lượt là trung điểm của BH và CD . IK vuông góc với AM tại K . CMR : IA2 + IM2 = BC2 + 1/4 CD2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ nha bạn
Xét tam giác ABD vuông tại A (ABCD là hình chứ nhật nên góc A = 90 độ)
Áp dụng hệ thức lượng trong tam giác vuông
\(\dfrac{1}{AD^2}+\dfrac{1}{AB^2}=\dfrac{1}{AH^2}\)
Thay số vào tính được AD = 15cm
Chu vi HCN = (20+15).2 = 70cm
Xét tam giác AHB vuông tại H có
\(AH^2+HB^2=AB^2\)( đl PYtago)
T/s \(12^2+HB^2=20^2\)
=>\(HB^2=20^2-12^2\)
=> \(HB^2=256\)
=> \(HB=16\)
Xét tam giác DAB vuông tại A có
\(AH^2=DH.HB\)
⇔ \(12^2=DH.16\)
=> \(DH=24\)
Xét tam giác AHD vuong tại H có
\(AH^2+DH^2=AD^2\)( đl Pyta go)
T/s \(12^2+24^2=AD^2\)
=> AD = \(12\sqrt{5}\)
Chu vi HCN ABCD là
( AB + AD ).2
= ( 20 +12\(\sqrt{5}\)).2
= 93,6 cm
Vây chu vi là 93,6 cm
Đề bài: Cho hình chữ nhật ABCD có AH vuông góc với BD tại H Gọi M,N lần lượt là trung điểm của BH và CD .Tính số đo góc AMN
Trả lời: B1 vẽ hình chữ nhật ABCD có AH vuông góc với BD tại H Gọi M,N lần lượt là trung điểm của BH và CD
B2: Nhìn hình và tìm các làm -> ra.
A B C D H M N K
gọi K là trung điểm AH.
\(\Delta AHB\)có MK là đường trung bình nên MK // AB ; MK = \(\frac{1}{2}AB\)
Mà \(AD\perp AB\)nên \(MK\perp AD\)
Xét \(\Delta AMD\)có \(MK\perp AD\); \(AH\perp MD\)nên K là trực tâm
\(\Rightarrow DK\perp AM\)
Mà DN = \(\frac{1}{2}CD\)
\(\Rightarrow MK=DN\)
tứ giác MKDN có MK = DN và MK // DN nên là hình bình hành
\(\Rightarrow\)DK // MN
\(\Rightarrow\)\(MN\perp AM\)
\(\Rightarrow\)\(\widehat{AMN}=90^o\)
BH=căn 10^2-6^2=8cm
=>BD=10^2/8=12,5cm
=>AD=7,5cm
S ABCD=7,5*10=75cm2
a: \(\left\{{}\begin{matrix}AB^2+AD^2=BD^2=25\\\dfrac{1}{AB^2}+\dfrac{1}{AD^2}=\dfrac{1}{AH^2}=\dfrac{25}{144}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=4\left(cm\right)\\AC=3\left(cm\right)\end{matrix}\right.\)
\(\Leftrightarrow S_{ABCD}=AB\cdot AC=12\left(cm^2\right)\)