K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2021

\(a,\left\{{}\begin{matrix}AE=EC\\DE=EF\\\widehat{AED}=\widehat{CEF}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta ADE=\Delta CFE\left(c.g.c\right)\\ b,\Delta ADE=\Delta CFE\\ \Rightarrow AD=CF\\ \text{Mà }AD=DB\Rightarrow BD=CF\\ c,\Delta ADE=\Delta CFE\Rightarrow\widehat{ADE}=\widehat{CFE}\\ \text{Mà 2 góc này ở vị trí slt }\Rightarrow AB\text{//}CF\)

20 tháng 12 2021

c: Xét tứ giác ADCF có 

E là trung điểm của AC

E là trung điểm của DF

Do đó: ADCF là hình bình hành

Suy ra: AD//CF

hay AB//CF

22 tháng 12 2020

a) Xét ΔAMC và ΔDMB có 

AM=DM(M là trung điểm của AD)

\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)

MC=MB(M là trung điểm của BC)

Do đó: ΔAMC=ΔDMB(c-g-c)

\(\widehat{CAM}=\widehat{BDM}\)(hai góc tương ứng)

mà \(\widehat{CAM}\) và \(\widehat{BDM}\) là hai góc ở vị trí so le trong

nên AC//BD(Dấu hiệu nhận biết hai đường thẳng song song)

b) Xét ΔAMB và ΔDMC có 

AM=DM(M là trung điểm của AD)

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC(M là trung điểm của BC)

Do đó: ΔAMB=ΔDMC(c-g-c)

⇒AB=CD(Hai cạnh tương ứng)

Ta có: ΔAMC=ΔDMB(cmt)

nên AC=BD(Hai cạnh tương ứng)

Xét ΔABC và ΔDCB có 

AB=DC(cmt)

AC=DB(cmt)

BC chung

Do đó: ΔABC=ΔDCB(c-c-c)

10 tháng 1 2022

10 tháng 1 2022

TK

 

a: Xét ΔAED và ΔCEF có 

EA=EC

\(\widehat{AED}=\widehat{CEF}\)

ED=EF

Do đó: ΔAED=ΔCEF

b: Xét ΔABC có 

D là trung điểm của AB

E là trung điểm của AC

Do đó: DE là đường trung bình

=>DE//BC và DE=1/2BC

12 tháng 10 2021

a: Xét ΔABC và ΔAED có 

AB=AE

\(\widehat{BAC}=\widehat{EAD}\)

AC=AD

Do đó: ΔABC=ΔAED

5 tháng 11 2023

không sử dụng đường trung bình

a: Xét ΔABC vuông tại A có AM là đường trung tuyến

nên \(AM=MB=MC=\dfrac{BC}{2}\)

Xét tứ giác AMBE có

D là trung điểm chung của AB và ME

=>AMBE là hình bình hành

Hình bình hành AMBE có MA=MB

nên AMBE là hình thoi

=>AE//MB và AE=MB

AE//MB

M\(\in\)BC

Do đó: AE//MC

AE=MB

MB=MC

Do đó: AE=MC

Xét tứ giác ACME có

AE//MC

AE=MC

Do đó: ACME là hình bình hành

b: Hình thoi AEBM trở thành hình vuông khi \(\widehat{MBE}=90^0\)

=>\(\widehat{MBA}=\dfrac{90^0}{2}=45^0\)

=>\(\widehat{ABC}=45^0\)

Xet ΔABD và ΔCBA có

AB/CB=BD/BA

góc B chung

=>ΔABD đồng dạng vơi ΔCBA